Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Electronic Structure of Ferric Iron Octahedrally Coordinated to Oxygen

Abstract

A FERRIC ion coordinated to an octahedron of oxide ions may be considered the basic polyhedral unit of Fe2O3 (haematite) and an important unit in Ca3Fe2Si3O12 (andradite garnet), Fe3O4 (magnetite) and other silicate and oxide minerals. A knowledge of the electronic structure of this unit is of considerable interest in mineralogy and solid state science. In recent years a great deal of information on the electronic structure of minerals has been obtained from the study of their spectral properties. We report here results of molecular quantum mechanical calculations on an FeO69- unit and compare them with experimental data from X-ray emission, X-ray photoelectron and optical spectroscopies. The agreement found between experimental and calculated spectral transition energies establishes the validity of the calculation and furthermore clarifies the interpretation of the spectral data.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Johnson, K. H., and Smith, jun., F. C., Phys. Rev., B, 5, 831 (1972).

    Article  ADS  Google Scholar 

  2. Slater, J. C., and Johnson, K. H., Phys. Rev., B, 5, 844 (1972).

    Article  ADS  Google Scholar 

  3. Johnson, K. H., and Smith, F. C., Internat. J. Quantum Chem., 55, 429 (1971).

    Google Scholar 

  4. Johnson, K. H., Adv. Quant. Chem., 7 (in the press).

  5. Koster, A. S., and Mendel, H., J. Phys. Chem. Solids, 31, 2511 (1970).

    Article  ADS  Google Scholar 

  6. Bonnelle, C., Annal. Phys., 14, 1 (1966).

    Google Scholar 

  7. Fischer, D. W., in Adv. X-ray Analysis, 13 (Plenum, 1970).

    Google Scholar 

  8. O'Nions, R. K., and Smith, O. G., Amer. Mineral, 56, 1452 (1971).

    Google Scholar 

  9. O'Nions, R. K., and Smith, D. G. W., Nature Physical Science, 231, 130 (1971).

    Article  ADS  Google Scholar 

  10. Koster, A. S., and Rieck, G. D., J. Phys. Chem. Sol., 31, 2505 (1970).

    Article  ADS  Google Scholar 

  11. Fischer, D. W., Phys. Rev., B, 5, 4219 (1972).

    Article  ADS  Google Scholar 

  12. Tandon, S. P., and Gupta, J. P., Spectr. Lett., 3, 297 (1970).

    Article  ADS  Google Scholar 

  13. Moore, R. K., and White, W. B., Canad. Mineral., 11, 791 (1972).

    Google Scholar 

  14. Messmer, R. P., Wahlgren, U., and Johnson, K. H., Chem. Phys. Lett., 18, 7 (1973).

    Article  ADS  Google Scholar 

  15. Slichter, C. P., and Drickamer, H. G., J. Chem. Phys., 56, 2142 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TOSSELL, J., VAUGHAN, D. & JOHNSON, K. Electronic Structure of Ferric Iron Octahedrally Coordinated to Oxygen. Nature Physical Science 244, 42–45 (1973). https://doi.org/10.1038/physci244042a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/physci244042a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing