Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Stress Control of Processes at Extensional Plate Margins

Abstract

THE concept of plate tectonics explains1,2 a wide range of geological and geophysical observations in terms of rigid plates of lithosphere overlying an asthenosphere of no effective strength3. The plates are of the order of 50–150 km thick3 except at their constructive margins where wedges of asthenosphere rise to the base of the crust4. These margins are coincident with the “World Rift System”. They are characterized by swarms of local earthquakes5 which are probably a result of vulcanism3,5 and may be explained by the hypothesis that magmatic material derived from the asthenosphere is being emplaced here6. Seismic activity is confined to a zone less than 20 km wide about the crest of the oceanic rift system3 but becomes dispersed over widths of 100 km or more over the continental extensions. The plate interface here is defined by the zone where the basaltic melt separates sufficiently from the asthenosphere to increase markedly the viscosity of the latter4, and magma will either remain where it is or be intruded into the rigid lithosphere if this fractures appropriately. We examine here the effect of the width of stress application below a constructive plate margin. Since the mechanisms producing plate motion are uncertain we do not base our study on the size or geometry of hypothetical convection cells, but merely assume that extensional plate margins are underlain by magma chambers under hydrostatic pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Morgan, W. J., J. Geophys. Res., 73, 1959 (1968).

    Article  ADS  Google Scholar 

  2. Le Pichon, X., J. Geophys. Res., 73, 3661 (1968).

    Article  ADS  Google Scholar 

  3. Isacks, B., Oliver, J., and Sykes, L. R., J. Geophys. Res., 73, 5855 (1968).

    Article  ADS  Google Scholar 

  4. Cann, J. R., Nature, 226, 928 (1970).

    Article  ADS  Google Scholar 

  5. Sykes, L. R., J. Geophys. Res., 72, 2131 (1967).

    Article  ADS  Google Scholar 

  6. Sykes, L. R., Amer. Geophys. Un., Geophys. Monogr., 2, 148 (1969).

    Google Scholar 

  7. Durelli, A. J., Phillips, E. A., and Tsao, C. H., Introduction to the Theoretical and Experimental Analysis of Stress and Strain (McGraw-Hill, New York, 1958).

    MATH  Google Scholar 

  8. Roberts, J. L., Geol. J. Spec. Issue, 2, 287 (1970).

    Article  Google Scholar 

  9. Bailey, E. B., et al., The Tertiary and Post-Tertiary Geology of Mull, Loch Aline and Oban, Explanation of Sheet 44, Mem. Geol. Surv. UK (1924).

    Google Scholar 

  10. Anderson, E. M., Proc. Roy. Soc. Edinb., 56, 128 (1936).

    Article  Google Scholar 

  11. Durrance, E. M., Proc. Geol. Ass., 78, 289 (1967).

    Article  Google Scholar 

  12. Jeffery, G. B., Phil. Trans. Roy. Soc., 221, A, 265 (1921).

    Article  ADS  Google Scholar 

  13. Sandford, A. R., Bull. Geol. Soc. Amer., 70, 19 (1959).

    Article  ADS  Google Scholar 

  14. Cann, J. R., Geophys. J. Roy. Astron. Soc., 15, 331 (1968).

    Article  ADS  Google Scholar 

  15. Larson, R. L., and Speiss, F. N., Science, 163, 68 (1969).

    Article  ADS  Google Scholar 

  16. Matthews, D. H., and Bath, J., Geophys. J. Roy. Astron. Soc., 13, 149 (1967).

    Article  Google Scholar 

  17. Harrison, C. G. A., J. Geophys. Res., 73, 2137 (1968).

    Article  ADS  Google Scholar 

  18. Piper, J. D. A., Tectonophysics (in the press).

  19. Watkins, N. D., and Richardson, A., Geophys. J. Roy. Astron. Soc., 23, 1 (1971).

    Article  Google Scholar 

  20. van Andel, T. H., and Bowin, C. O., J. Geophys. Res., 73, 1279 (1968).

    Article  ADS  Google Scholar 

  21. Vogt, P. R., Schneider, E. D., and Johnson, G. L., Amer. Geophys. Un. Geophys. Monogr., 2, 556 (1969).

    Google Scholar 

  22. Bodvarsson, G., and Walker, G. P. L., Geophys. J. Roy. Astron. Soc., 8, 285 (1964).

    Article  Google Scholar 

  23. Le Bas, M. J., Geol. Mag., 108, 373 (1971).

    Article  ADS  Google Scholar 

  24. Saggerson, E. P., and Baker, B. H., Quart. J. Geol. Soc., 121, 51 (1965).

    Article  Google Scholar 

  25. Mohr, P. A., Bull. Geophys. Obs. Addis Ababa, 11 (1967).

  26. Gouin, P., Phil. Trans. Roy. Soc., A, 267, 339 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PIPER, J., GIBSON, I. Stress Control of Processes at Extensional Plate Margins. Nature Physical Science 238, 83–86 (1972). https://doi.org/10.1038/physci238083a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/physci238083a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing