Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letters to Editor
  • Published:

Calculation of the Electrical Resistivity of Liquid Iron in the Earth's Core

Abstract

SEVERAL empirical values for the electrical resistivity of the Earth's fluid core have been proposed1. The latest estimates are those of Gardiner and Stacey2 which correct earlier estimates by Stacey3. They use data on the electrical resistivity and its temperature coefficient for liquid iron and its alloys at 1,800 K and combine this with the observed pressure coefficient of resistivity in solid iron-nickel alloys at 100 kbar. These results are then extrapolated to the core temperatures ( 4,000 K) and pressures (3,000 kbar) assuming the temperature and pressure effects to be additive. As the authors of ref. 2 admit, this latter assumption is of doubtful validity. Obviously such large extrapolations involve considerable uncertainties; since the core resistivity is a vital parameter in the theories of the origin of the geomagnetic field it is important to assess the validity of the existing estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Tozer, D. C., Phys. Chem. of the Earth, 3, 414 (1959).

    Article  ADS  Google Scholar 

  2. Gardiner, R. B., and Stacey, F. D., Phys. Earth Planet. Interiors, 4, 406 (1971).

    Article  ADS  Google Scholar 

  3. Stacey, F. D., Earth Planet. Sci. Lett., 3, 204 (1967).

    Article  ADS  Google Scholar 

  4. Ziman, J. M., Phil. Mag., 6, 1013 (1961).

    Article  ADS  Google Scholar 

  5. Ziman, J. M., Solid State Phys., 26, 1 (1971).

    Article  Google Scholar 

  6. Evans, R., Greenwood, D. A., and Lloyd, P., Phys. Lett., 35A, 57 (1971).

    Article  ADS  Google Scholar 

  7. Ziman, J. M., Proc. Phys. Soc., 91, 701 (1967).

    Article  ADS  Google Scholar 

  8. Ziman, J. M., Adv. Phys., 16, 551 (1967).

    Article  ADS  Google Scholar 

  9. Dickey, J. N., Meyer, A., and Young, W. H., Proc. Phys. Soc., 92, 450 (1967).

    Article  ADS  Google Scholar 

  10. Matheiss, L. F., Phys. Rev., 133, A1399 (1964).

    Article  ADS  Google Scholar 

  11. Dreirach, O., J. Phys. F. Metal Phys., 1, L40 (1971).

    Article  ADS  Google Scholar 

  12. Waseda, Y., and Suzuki, K., Phys. Stat. Sol., 39, 669 (1970).

    Article  ADS  Google Scholar 

  13. Ashcroft, N. W., and Lekner, J., Phys. Rev., 145, 83 (1966).

    Article  ADS  Google Scholar 

  14. Higgins, G., and Kennedy, G. C., J. Geophys. Res., 8, 1870 (1971).

    Article  ADS  Google Scholar 

  15. Busch, G., Güntherodt, H. J., and Künzi, H. U., Phys. Lett., 34 A, 309 (1971).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

JAIN, A., EVANS, R. Calculation of the Electrical Resistivity of Liquid Iron in the Earth's Core. Nature Physical Science 235, 165–167 (1972). https://doi.org/10.1038/physci235165a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/physci235165a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing