Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis

Abstract

Background:

Prostate cancer (PCa) is the fifth leading cause of cancer-related deaths worldwide. Many epidemiological studies have investigated the association between prostate cancer and lycopene, however, results have been inconsistent. This study aims to determine the impact of dietary and circulating concentrations of lycopene on PCa risk and to investigate potential dose-response associations.

Methods:

We conducted a systematic review and dose-response meta-analysis for the for the association between dietary and circulating lycopene and PCa risk. Eligible studies were published before 1 December 2016 and were identified from PubMed, Web of Science and the Cochrane Library. We estimated pooled relative risk ratios (RR) and 95% confidence intervals (CI) using random and fixed effects models. Linear and nonlinear dose-response relationships were also evaluated for PCa risk.

Results:

Forty-two studies were included in the analysis, which included 43 851 cases of PCa reported from 692 012 participants. Both dietary intake (RR=0.88, 95% CI: 0.78−0.98, P=0.017) and circulating concentrations (RR=0.88, 95% CI: 0.79−0.98, P=0.019) of lycopene were significantly associated with reduced PCa risk. Sensitivity analyses within the dose-response analysis further revealed a significant linear dose-response for dietary lycopene and PCa risk such that PCa decreased by 1% for every additional 2 mg of lycopene consumed (P=0.026). Additionally, PCa risk decreased by 3.5 to 3.6% for each additional 10 μgdl−1 of circulating lycopene in the linear and nonlinear models respectively (plinear=0.004, pnonlinear=0.006). While there were no associations between lycopene and advanced PCa, there was a trend for protection against PCa aggressiveness (RR=0.74, 95% CI: 0.55−1.00, P=0.052).

Conclusions:

Our data demonstrate that higher dietary and circulating lycopene concentrations are inversely associated with PCa risk. This was accompanied by dose-response relationships for dietary and circulating lycopene. However, lycopene was not associated with a reduced risk of advanced PCa. Further studies are required to determine the mechanisms underlying these associations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359–E386.

    CAS  PubMed  Google Scholar 

  2. Wan L, Tan HL, Thomas-Ahner JM, Pearl DK, Erdman JW Jr, Moran NE et al. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis. Cancer Prev Res 2014; 7: 1228–1239.

    CAS  Google Scholar 

  3. Key TJ, Appleby PN, Travis RC, Albanes D, Alberg AJ, Barricarte A et al. Carotenoids, retinol, tocopherols, and prostate cancer risk: pooled analysis of 15 studies. Am J Clin Nutr 2015; 102: 1142–1157.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Giovannucci E . Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 1999; 91: 317–331.

    CAS  PubMed  Google Scholar 

  5. Kavanaugh CJ, Trumbo PR, Ellwood KC . The U.S. Food and Drug Administration's evidence-based review for qualified health claims: tomatoes, lycopene, andcancer. J Natl Cancer Inst 2007; 99: 1074–1085.

    CAS  PubMed  Google Scholar 

  6. Krinsky NI, Johnson EJ . Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005; 26: 459–516.

    CAS  PubMed  Google Scholar 

  7. Story EN, Kopec RE, Schwartz SJ, Harris GK . An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol 2010; 1: 189–210.

    CAS  PubMed  Google Scholar 

  8. Wang YL, Cui R, Xiao YY, Fang JM, Xu Q . Effect of Carotene and Lycopene on the Risk of Prostate Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies. PLoS ONE 2015; 10: e0137427.

    PubMed  PubMed Central  Google Scholar 

  9. Etminan M, Takkouche B, Caamano-Isorna F . The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol Biomarkers Prev 2004; 13: 340–345.

    CAS  PubMed  Google Scholar 

  10. Chen JY, Song Y, Zhang LS . Lycopene/tomato consumption and the risk of prostate cancer: a systematic review and meta-analysis of prospective studies. J Nutr Sci Vitaminol 2013; 59: 213–223.

    CAS  PubMed  Google Scholar 

  11. Chen P, Zhang W, Wang X, Zhao K, Negi DS, Zhuo L et al. Lycopene and risk of prostate cancer: a systematic review and meta-analysis. Medicine 2015; 94: e1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006–1012.

    PubMed  Google Scholar 

  13. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008–2012.

    CAS  PubMed  Google Scholar 

  14. Stang A . Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603–605.

    Article  PubMed  Google Scholar 

  15. Egger M, Smith GD, Phillips AN . Meta-analysis: principles and procedures. Brit Med J 1997; 315: 1533–1537.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Higgins JP, Thompson SG . Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539–1558.

    PubMed  Google Scholar 

  17. Jackson D, White IR, Thompson SG . Extending DerSimonian and Laird's methodology to perform multivariate random effects meta-analyses. Stat Med 2010; 29: 1282–1297.

    PubMed  Google Scholar 

  18. Chen H, Manning AK, Dupuis J . A method of moments estimator for random effect multivariate meta-analysis. Biometrics 2012; 68: 1278–1284.

    PubMed  PubMed Central  Google Scholar 

  19. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L . Contour-enhanced meta-analysis funnel plots help distinguish publication bias from other causes of asymmetry. J Clin Epidemiol 2008; 61: 991–996.

    PubMed  Google Scholar 

  20. Sterne JAC, Egger M . Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 2001; 54: 1046–1055.

    CAS  PubMed  Google Scholar 

  21. Egger M, Davey Smith G, Schneider M, Minder C . Bias in meta-analysis detected by a simple, graphical test. Brit Med J 1997; 315: 629–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Begg CB, Mazumdar M . Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088–1101.

    CAS  PubMed  Google Scholar 

  23. Duval S, Tweedie R . Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000; 56: 455–463.

    CAS  PubMed  Google Scholar 

  24. Greenland S, Longnecker MP . Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992; 135: 1301–1309.

    CAS  PubMed  Google Scholar 

  25. Orsini N, Bellocco R, Greenland S . Generalized least squares for trend estimation of summarized dose-response data. Stata J 2006; 6: 40–57.

    Google Scholar 

  26. Almushatat AS, Talwar D, McArdle PA, Williamson C, Sattar N, O'Reilly DS et al. Vitamin antioxidants, lipid peroxidation and the systemic inflammatory response in patients with prostate cancer. Int J Cancer 2006; 118: 1051–1053.

    CAS  PubMed  Google Scholar 

  27. Ansari MS, Gupta NP . A comparison of lycopene and orchidectomy vs orchidectomy alone in the management of advanced prostate cancer. BJU Int 2003; 92: 375–378 discussion 378.

    CAS  PubMed  Google Scholar 

  28. Clark PE, Hall MC, Borden LS Jr, Miller AA, Hu JJ, Lee WR et al. Phase I-II prospective dose-escalating trial of lycopene in patients with biochemical relapse of prostate cancer after definitive local therapy. Urology 2006; 67: 1257–1261.

    PubMed  Google Scholar 

  29. Freeman VL, Meydani M, Yong S, Pyle J, Wan Y, Arvizu-Durazo R et al. Prostatic levels of tocopherols, carotenoids, and retinol in relation to plasma levels and self-reported usual dietary intake. Am J Epidemiol 2000; 151: 109–118.

    CAS  PubMed  Google Scholar 

  30. Gann PH, Deaton RJ, Rueter EE, van Breemen RB, Nonn L, Macias V et al. A phase ii randomized trial of lycopene-rich tomato extract among men with high-grade prostatic intraepithelial neoplasia. Nutr Cancer 2015; 67: 1104–1112.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jenab M, Ferrari P, Mazuir M, Tjonneland A, Clavel-Chapelon F, Linseisen J et al. Variations in lycopene blood levels and tomato consumption across European countries based on the European prospective investigation into, cancer and nutrition (EPIC) study. J Nutr 2005; 135: 2032S–2036S.

    CAS  PubMed  Google Scholar 

  32. Kim HS, Bowen P, Chen LW, Duncan C, Ghosh L, Sharifi R et al. Effects of tomato sauce consumption on apoptotic cell death in prostate benign hyperplasia and carcinoma. Nutr Cancer Int J 2003; 47: 40–47.

    CAS  Google Scholar 

  33. Kristal AR, Arnold KB, Schenk JM, Neuhouser ML, Goodman P, Penson DF et al. Dietary patterns, supplement use, and the risk of symptomatic benign prostatic hyperplasia: results from the prostate cancer prevention trial. Am J Epidemiol 2008; 167: 925–934.

    PubMed  Google Scholar 

  34. Kucuk O, Sarkar FH, Sakr W, Khachik F, Djuric Z, Banerjee M et al. Lycopene in the treatment of prostate cancer. Pure Appl Chem 2002; 74: 1443–1450.

    CAS  Google Scholar 

  35. Mariani S, Lionetto L, Cavallari M, Tubaro A, Rasio D, De Nunzio C et al. Low prostate concentration of lycopene is associated with development of prostate cancer in patients with high-grade prostatic intraepithelial neoplasia. Int J Mol Sci 2014; 15: 1433–1440.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McMillan DC, Talwar D, Sattar N, Underwood M, O'Reilly DS, McArdle C . The relationship between reduced vitamin antioxidant concentrations and the systemic inflammatory response in patients with common solid tumours. Clin Nutr 2002; 21: 161–164.

    CAS  PubMed  Google Scholar 

  37. Mohanty NK, Saxena S, Singh UP, Goyal NK, Arora RP . Lycopene as a chemopreventive agent in the treatment of high-grade prostate intraepithelial neoplasia. Urol Oncol 2005; 23: 383–385.

    CAS  PubMed  Google Scholar 

  38. Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D . Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer 2015; 137: 2124–2132.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Niclis C, Diaz MD, Eynard AR, Roman MD, La Vecchia C . Dietary Habits and Prostate Cancer Prevention: A Review of Observational Studies by Focusing on South America. Nutr Cancer Int J 2012; 64: 23–33.

    CAS  Google Scholar 

  40. Norrish AE, Jackson RT, Sharpe SJ, Skeaff CM . Men who consume vegetable oils rich in monounsaturated fat: their dietary patterns and risk of prostate cancer (New Zealand). Cancer Causes Control 2000; 11: 609–615.

    CAS  PubMed  Google Scholar 

  41. Parsons JK, Newman V, Mohler JL, Pierce JP, Paskett E, Marshall J . The Men's Eating and Living (MEAL) study: a Cancer and Leukemia Group B pilot trial of dietary intervention for the treatment of prostate cancer. Urology 2008; 72: 633–637.

    PubMed  Google Scholar 

  42. Parsons JK, Pierce JP, Mohler J, Paskett E, Jung SH, Humphrey P et al. A randomized trial of diet in men with early stage prostate cancer on active surveillance: rationale and design of the Men's Eating and Living (MEAL) Study (CALGB 70807 [Alliance]). Contemp Clin Trials 2014; 38: 198–203.

    PubMed  PubMed Central  Google Scholar 

  43. Rao AV, Fleshner N, Agarwal S . Serum and tissue lycopene and biomarkers of oxidation in prostate cancer patients: a case-control study. Nutr Cancer 1999; 33: 159–164.

    CAS  PubMed  Google Scholar 

  44. Rohrmann S, Smit E, Giovannucci E, Platz EA . Association between serum concentrations of micronutrients and lower urinary tract symptoms in older men in the Third National Health and Nutrition Examination Survey. Urology 2004; 64: 504–509.

    PubMed  Google Scholar 

  45. Schwenke C, Ubrig B, Thurmann P, Eggersmann C, Roth S . Lycopene for advanced hormone refractory prostate cancer: a prospective, open phase II pilot study. J Urol 2009; 181: 1098–1103.

    CAS  PubMed  Google Scholar 

  46. Sporn MB, Liby KT . Is lycopene an effective agent for preventing prostate cancer? Cancer Prev Res 2013; 6: 384–386.

    CAS  Google Scholar 

  47. van Breemen RB, Sharifi R, Viana M, Pajkovic N, Zhu DW, Yuan L et al. Antioxidant effects of lycopene in African American men with prostate cancer or benign prostate hyperplasia: a randomized, controlled trial. Cancer Prev Res 2011; 4: 711–718.

    CAS  Google Scholar 

  48. van Die MD, Bone KM, Emery J, Williams SG, Pirotta MV, Paller CJ . Phytotherapeutic interventions in the management of biochemically recurrent prostate cancer: a systematic review of randomised trials. BJU Int 2016; 22: 13361.

    Google Scholar 

  49. Venkitaraman R, Thomas K, Grace P, Dearnaley DP, Horwich A, Huddart RA et al. Serum micronutrient and antioxidant levels at baseline and the natural history of men with localised prostate cancer on active surveillance. Tumour Biol 2010; 31: 97–102.

    CAS  PubMed  Google Scholar 

  50. Al-Delaimy WK, van Kappel AL, Ferrari P, Slimani N, Steghens JP, Bingham S et al. Plasma levels of six carotenoids in nine European countries: report from the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 2004; 7: 713–722.

    PubMed  Google Scholar 

  51. Andersson SO, Wolk A, Bergstrom R, Giovannucci E, Lindgren C, Baron J et al. Energy, nutrient intake and prostate cancer risk: a population-based case-control study in Sweden. Int J Cancer 1996; 68: 716–722.

    CAS  PubMed  Google Scholar 

  52. Dagnelie PC, Schuurman AG, Goldbohm RA, Van den Brandt PA . Diet, anthropometric measures and prostate cancer risk: a review of prospective cohort and intervention studies. BJU Int 2004; 93: 1139–1150.

    CAS  PubMed  Google Scholar 

  53. Donaldson MS . A carotenoid health index based on plasma carotenoids and health outcomes. Nutrients 2011; 3: 1003–1022.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hackshaw-McGeagh LE, Perry RE, Leach VA, Qandil S, Jeffreys M, Martin RM et al. A systematic review of dietary, nutritional, and physical activity interventions for the prevention of prostate cancer progression and mortality. Cancer Causes Control 2015; 26: 1521–1550.

    PubMed  PubMed Central  Google Scholar 

  55. Hardin J, Cheng I, Witte JS . Impact of consumption of vegetable, fruit, grain, and high glycemic index foods on aggressive prostate cancer risk. Nutr Cancer 2011; 63: 860–872.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Haseen F, Cantwell MM, O'Sullivan JM, Murray LJ . Is there a benefit from lycopene supplementation in men with prostate cancer? A systematic review. Prostate Cancer Prostatic Dis 2009; 12: 325–332.

    CAS  PubMed  Google Scholar 

  57. Hayes RB, Ziegler RG, Gridley G, Swanson C, Greenberg RS, Swanson GM et al. Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol Biomarkers Prev 1999; 8: 25–34.

    CAS  PubMed  Google Scholar 

  58. Ilic D, Forbes Kristian M, Hassed C . Lycopene for the prevention of prostatecancer. Cochrane Database Syst Rev 2011; 11: CD008007.

  59. Jatoi A, Burch P, Hillman D, Vanyo JM, Dakhil S, Nikcevich D et al. A tomato-based, lycopene-containing intervention for androgen-independent prostate cancer: results of a Phase II study from the North Central Cancer Treatment Group. Urology 2007; 69: 289–294.

    PubMed  Google Scholar 

  60. Li H, Kantoff PW, Giovannucci E, Leitzmann MF, Gaziano JM, Stampfer MJ et al. Manganese superoxide dismutase polymorphism, prediagnostic antioxidant status, and risk of clinical significant prostate cancer. Cancer Res 2005; 65: 2498–2504.

    CAS  PubMed  Google Scholar 

  61. Bosetti C, Micelotta S, Dal Maso L, Talamini R, Montella M, Negri E et al. Food groups and risk of prostate cancer in Italy. Int J Cancer 2004; 110: 424–428.

    CAS  PubMed  Google Scholar 

  62. Eichholzer M, Stahelin HB, Ludin E, Bernasconi F . Smoking, plasma vitamins C, E, retinol, and carotene, and fatal prostate cancer: seventeen-year follow-up of the prospective basel study. Prostate 1999; 38: 189–198.

    CAS  PubMed  Google Scholar 

  63. Fontana CML, Rincon GMR, Lombino DM, Recupero ALU, Elizalde RFP, Laur JDL . Body mass index and diet affect prostate cancer development. Actas Urologicas Espanolas 2009; 33: 741–746.

    Google Scholar 

  64. Kolonel LN, Hankin JH, Whittemore AS, Wu AH, Gallagher RP, Wilkens LR et al. Vegetables, fruits, legumes and prostate cancer: a multiethnic case-controlstudy. Cancer Epidemiol Biomarkers Prev 2000; 9: 795–804.

    CAS  PubMed  Google Scholar 

  65. Pourmand G, Salem S, Mehrsai A, Lotfi M, Amirzargar MA, Mazdak H et al. The risk factors of prostate cancer: a multicentric case-control study in Iran. Asian Pac J Cancer Prev 2007; 8: 422–428.

    PubMed  Google Scholar 

  66. Salem S, Salahi M, Mohseni M, Ahmadi H, Mehrsai A, Jahani Y et al. Major dietary factors and prostate cancer risk: a prospective multicenter case-control study. Nutr Cancer Int J 2011; 63: 21–27.

    Google Scholar 

  67. Schwarz S, Obermuller-Jevic UC, Hellmis E, Koch W, Jacobi G, Biesalski HK . Lycopene inhibits disease progression in patients with benign prostate hyperplasia. J Nutr 2008; 138: 49–53.

    CAS  PubMed  Google Scholar 

  68. Zhang J, Dhakal IB, Lang NP, Kadlubar FF . Polymorphisms in inflammatory genes, plasma antioxidants, and prostate cancer risk. Cancer Causes Control 2010; 21: 1437–1444.

    PubMed  PubMed Central  Google Scholar 

  69. Putnam SD, Cerhan JR, Parker AS, Bianchi GD, Wallace RB, Cantor KP et al. Lifestyle and anthropometric risk factors for prostate cancer in a cohort of Iowa men. Ann Epidemiol 2000; 10: 361–369.

    CAS  PubMed  Google Scholar 

  70. Vance TM, Wang Y, Su LJ, Fontham ETH, Steck SE, Arab L et al. Dietary total antioxidant capacity is inversely associated with prostate cancer aggressiveness in a population-based study. Nutr Cancer Int J 2016; 68: 214–224.

    CAS  Google Scholar 

  71. Ohno Y, Yoshida O, Oishi K, Okada K, Yamabe H, Schroeder FH . Dietary beta-carotene and cancer of the prostate - a case-control study in Kyoto, Japan. Cancer Res 1988; 48: 1331–1336.

    CAS  PubMed  Google Scholar 

  72. Umesawa M, Iso H, Mikami K, Kubo T, Suzuki K, Watanabe Y et al. Relationship between vegetable and carotene intake and risk of prostate cancer: the JACC study. Br J Cancer 2014; 110: 792–796.

    CAS  PubMed  Google Scholar 

  73. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC . Intake of carotenoids and retinol in relation to risk of prostate cancer. J Natl Cancer Inst 1995; 87: 1767–1776.

    CAS  PubMed  Google Scholar 

  74. Giovannucci E, Rimm EB, Liu Y, Stampfer MJ, Willett WC . A prospective study of tomato products, lycopene, and prostate cancer risk. J Natl Cancer Inst 2002; 94: 391–398.

    CAS  PubMed  Google Scholar 

  75. Graff RE, Pettersson A, Lis RT, Ahearn TU, Markt SC, Wilson KM et al. Dietary lycopene intake and risk of prostate cancer defined by ERG protein expression. Am J Clin Nutr 2016; 103: 851–860.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jian L, Du CJ, Lee AH, Binns CW . Do dietary lycopene and other carotenoids protect against prostate cancer? Int J Cancer 2005; 113: 1010–1014.

    PubMed  Google Scholar 

  77. Huang HY, Alberg AJ, Norkus EP, Hoffman SC, Comstock GW, Helzlsouer KJ . Prospective study of antioxidant micronutrients in the blood and the risk of developing prostate cancer. Am J Epidemiol 2003; 157: 335–344.

    PubMed  Google Scholar 

  78. Agalliu I, Kirsh VA, Kreiger N, Soskolne CL, Rohan TE . Oxidative balance score and risk of prostate cancer: results from a case-cohort study. Cancer Epidemiol 2011; 35: 353–361.

    CAS  PubMed  Google Scholar 

  79. Antwi SO, Steck SE, Su LJ, Hebert JR, Zhang H, Craft NE et al. Carotenoid intake and adipose tissue carotenoid levels in relation to prostate cancer aggressiveness among African-American and European-American men in the North Carolina-Louisiana prostate cancer project (PCaP). Prostate 2016; 76: 1053–1066.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Bosetti C, Talamini R, Montella M, Negri E, Conti E, Franceschi S et al. Retinol, carotenoids and the risk of prostate cancer: a case-control study from Italy. Int J Cancer 2004; 112: 689–692.

    CAS  PubMed  Google Scholar 

  81. Cohen JH, Kristal AR, Stanford JL . Fruit and vegetable intakes and prostate cancer risk. J Natl Cancer Inst 2000; 92: 61–68.

    CAS  PubMed  Google Scholar 

  82. Deneo-Pellegrini H, De Stefani E, Ronco A, Mendilaharsu M . Foods, nutrients and prostate cancer: a case-control study in Uruguay. Br J Cancer 1999; 80: 591–597.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Goodman M, Bostick RM, Ward KC, Terry PD, van Gils CH, Taylor JA et al. Lycopene intake and prostate cancer risk: effect modification by plasma antioxidants and the XRCC1 genotype. Nutr Cancer 2006; 55: 13–20.

    CAS  PubMed  Google Scholar 

  84. Hodge AM, English DR, McCredie MR, Severi G, Boyle P, Hopper JL et al. Foods, nutrients and prostate cancer. Cancer Causes Control 2004; 15: 11–20.

    PubMed  Google Scholar 

  85. Jain MG, Hislop GT, Howe GR, Ghadirian P . Plant foods, antioxidants, and prostate cancer risk: findings from case-control studies in Canada. Nutr Cancer 1999; 34: 173–184.

    CAS  PubMed  Google Scholar 

  86. Jian L, Lee AH, Binns CW . Tea and lycopene protect against prostate cancer. Asia Pac J Clin Nutr 2007; 16: 453–457.

    CAS  PubMed  Google Scholar 

  87. Key TJ, Silcocks PB, Davey GK, Appleby PN, Bishop DT . A case-control study of diet and prostate cancer. Br J Cancer 1997; 76: 678–687.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Kirsh VA, Mayne ST, Peters U, Chatterjee N, Leitzmann MF, Dixon LB et al. A prospective study of lycopene and tomato product intake and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2006; 15: 92–98.

    CAS  PubMed  Google Scholar 

  89. Kristal AR, Arnold KB, Neuhouser ML, Goodman P, Platz EA, Albanes D et al. Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial. Am J Epidemiol 2010; 172: 566–577.

    PubMed  PubMed Central  Google Scholar 

  90. Lewis JE, Soler-Vila H, Clark PE, Kresty LA, Allen GO, Hu JJ . Intake of plant foods and associated nutrients in prostate cancer risk. Nutr Cancer Int J 2009; 61: 216–224.

    CAS  Google Scholar 

  91. Lu QY, Hung JC, Heber D, Go VL, Reuter VE, Cordon-Cardo C et al. Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiol Biomarkers Prev 2001; 10: 749–756.

    CAS  PubMed  Google Scholar 

  92. McCann SE, Ambrosone CB, Moysich KB, Brasure J, Marshall JR, Freudenheim JL et al. Intakes of selected nutrients, foods, and phytochemicals and prostate cancer risk in western New York. Nutr Cancer 2005; 53: 33–41.

    CAS  PubMed  Google Scholar 

  93. Meyer F, Bairati I, Fradet Y, Moore L . Dietary energy and nutrients in relation to preclinical prostate cancer. Nutr Cancer 1997; 29: 120–126.

    CAS  PubMed  Google Scholar 

  94. Norrish AE, Jackson RT, Sharpe SJ, Skeaff CM . Prostate cancer and dietary carotenoids. Am J Epidemiol 2000; 151: 119–123.

    CAS  PubMed  Google Scholar 

  95. Park SY, Haiman CA, Cheng I, Park SL, Wilkens LR, Kolonel LN et al. Racial/ethnic differences in lifestyle-related factors and prostate cancer risk: the Multiethnic Cohort Study. Cancer Causes Control 2015; 26: 1507–1515.

    PubMed  PubMed Central  Google Scholar 

  96. Parker AS, Cerhan JR, Putnam SD, Cantor KP, Lynch CF . A cohort study of farming and risk of prostate cancer in Iowa. Epidemiology 1999; 10: 452–455.

    CAS  PubMed  Google Scholar 

  97. Sanderson M, Coker AL, Logan P, Zheng W, Fadden MK . Lifestyle and prostate cancer among older African-American and Caucasian men in South Carolina. Cancer Causes Control 2004; 15: 647–655.

    PubMed  PubMed Central  Google Scholar 

  98. Schuurman AG, Goldbohm RA, Brants HA, van den Brandt PA . A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). Cancer Causes Control 2002; 13: 573–582.

    PubMed  Google Scholar 

  99. Shahar S, Shafurah S, Hasan Shaari NS, Rajikan R, Rajab NF, Golkhalkhali B et al. Roles of diet, lifetime physical activity and oxidative DNA damage in the occurrence of prostate cancer among men in Klang Valley, Malaysia. Asian Pac J Cancer Prev 2011; 12: 605–611.

    PubMed  Google Scholar 

  100. Stram DO, Hankin JH, Wilkens LR, Park S, Henderson BE, Nomura AM et al. Prostate cancer incidence and intake of fruits, vegetables and related micronutrients: the multiethnic cohort study (United States). Cancer Causes Control 2006; 17: 1193–1207.

    PubMed  Google Scholar 

  101. Wang Y, Jacobs EJ, Newton CC, McCullough ML . Lycopene, tomato products and prostate cancer-specific mortality among men diagnosed with nonmetastatic prostate cancer in the Cancer Prevention Study-II Nutrition Cohort. Int J Cancer 2016; 2: 30027.

    Google Scholar 

  102. Zu K, Mucci L, Rosner BA, Clinton SK, Loda M, Stampfer MJ et al. Dietary lycopene, angiogenesis, and prostate cancer: a prospective study in the prostate-specific antigen era. J Natl Cancer Inst 2014; 106: djt430.

    PubMed  PubMed Central  Google Scholar 

  103. Beilby J, Ambrosini GL, Rossi E, de Klerk NH, Musk AW . Serum levels of folate, lycopene, beta-carotene, retinol and vitamin E and prostate cancer risk. Eur J Clin Nutr 2010; 64: 1235–1238.

    CAS  PubMed  Google Scholar 

  104. Chang S, Erdman JW Jr, Clinton SK, Vadiveloo M, Strom SS, Yamamura Y et al. Relationship between plasma carotenoids and prostate cancer. Nutr Cancer 2005; 53: 127–134.

    CAS  PubMed  Google Scholar 

  105. Gann PH, Ma J, Giovannucci E, Willett W, Sacks FM, Hennekens CH et al. Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res 1999; 59: 1225–1230.

    CAS  PubMed  Google Scholar 

  106. Gill JK, Franke AA, Steven Morris J, Cooney RV, Wilkens LR, Le Marchand L et al. Association of selenium, tocopherols, carotenoids, retinol, and 15-isoprostane F(2t) in serum or urine with prostate cancer risk: the multiethnic cohort. Cancer Causes Control 2009; 20: 1161–1171.

    PubMed  PubMed Central  Google Scholar 

  107. Goodman GE, Schaffer S, Omenn GS, Chen C, King I . The association between lung and prostate cancer risk, and serum micronutrients: results and lessons learned from beta-carotene and retinol efficacy trial. Cancer Epidemiol Biomarkers Prev 2003; 12: 518–526.

    CAS  PubMed  Google Scholar 

  108. Hsing AW, Comstock GW, Abbey H, Polk BF . Serologic precursors of cancer. Retinol, carotenoids, and tocopherol and risk of prostate cancer. J Natl Cancer Inst 1990; 82: 941–946.

    CAS  PubMed  Google Scholar 

  109. Karppi J, Kurl S, Nurmi T, Rissanen TH, Pukkala E, Nyyssonen K . Serum lycopene and the risk of cancer: the Kuopio Ischaemic Heart Disease Risk Factor (KIHD) study. Ann Epidemiol 2009; 19: 512–518.

    PubMed  Google Scholar 

  110. Key TJ, Appleby PN, Allen NE, Travis RC, Roddam AW, Jenab M et al. Plasma carotenoids, retinol, and tocopherols and the risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition study. Am J Clin Nutr 2007; 86: 672–681.

    CAS  PubMed  Google Scholar 

  111. Kristal AR, Till C, Platz EA, Song X, King IB, Neuhouser ML et al. Serum lycopene concentration and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Cancer Epidemiol Biomarkers Prev 2011; 20: 638–646.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Nomura AM, Stemmermann GN, Lee J, Craft NE . Serum micronutrients and prostate cancer in Japanese Americans in Hawaii. Cancer Epidemiol Biomarkers Prev 1997; 6: 487–491.

    CAS  PubMed  Google Scholar 

  113. Nordstrom T, Van Blarigan EL, Ngo V, Roy R, Weinberg V, Song X et al. Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer. Prostate 2016; 76: 339–348.

    PubMed  Google Scholar 

  114. Peters U, Leitzmann MF, Chatterjee N, Wang Y, Albanes D, Gelmann EP et al. Serum lycopene, other carotenoids, and prostate cancer risk: a nested case-control study in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 2007; 16: 962–968.

    CAS  PubMed  Google Scholar 

  115. Vogt TM, Mayne ST, Graubard BI, Swanson CA, Sowell AL, Schoenberg JB et al. Serum lycopene, other serum carotenoids, and risk of prostate cancer in US Blacks and Whites. Am J Epidemiol 2002; 155: 1023–1032.

    CAS  PubMed  Google Scholar 

  116. Wu K, Erdman JW Jr., Schwartz SJ, Platz EA, Leitzmann M, Clinton SK et al. Plasma and dietary carotenoids, and the risk of prostate cancer: a nested case-control study. Cancer Epidemiol Biomarkers Prev 2004; 13: 260–269.

    CAS  PubMed  Google Scholar 

  117. Zhang J, Dhakal I, Stone A, Ning B, Greene G, Lang NP et al. Plasma carotenoids and prostate cancer: a population-based case-control study in Arkansas. Nutr Cancer 2007; 59: 46–53.

    CAS  PubMed  Google Scholar 

  118. Michels KB . The role of nutrition in cancer development and prevention. Int J Cancer 2005; 114: 163–165.

    CAS  PubMed  Google Scholar 

  119. Jenab M, Slimani N, Bictash M, Ferrari P, Bingham SA . Biomarkers in nutritional epidemiology: applications, needs and new horizons. Hum Genet 2009; 125: 507–525.

    PubMed  Google Scholar 

  120. Moussa M, Landrier JF, Reboul E, Ghiringhelli O, Comera C, Collet X et al. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1. J Nutr 2008; 138: 1432–1436.

    CAS  PubMed  Google Scholar 

  121. van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P, Williams DL et al. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry 2005; 44: 4517–4525.

    CAS  PubMed  Google Scholar 

  122. Tyssandier V, Reboul E, Dumas JF, Bouteloup-Demange C, Armand M, Marcand J et al. Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 2003; 284: G913–G923.

    CAS  PubMed  Google Scholar 

  123. Stratton J, Godwin M . The effect of supplemental vitamins and minerals on the development of prostate cancer: a systematic review and meta-analysis. Fam Pract 2011; 28: 243–252.

    PubMed  Google Scholar 

  124. Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst 1996; 88: 1550–1559.

    CAS  PubMed  Google Scholar 

  125. Druesne-Pecollo N, Latino-Martel P, Norat T, Barrandon E, Bertrais S, Galan P et al. Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials. Int J Cancer 2010; 127: 172–184.

    CAS  PubMed  Google Scholar 

  126. Wei MY, Giovannucci EL . Lycopene, tomato products, and prostate cancer incidence: a review and reassessment in the PSA screening era. J Oncol 2012; 2012: 271063.

    PubMed  PubMed Central  Google Scholar 

  127. Borel P, Desmarchelier C, Nowicki M, Bott R . Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med 2015; 83: 238–244.

    CAS  PubMed  Google Scholar 

  128. Roobol MJ, Carlsson SV . Risk stratification in prostate cancer screening. Nat Rev Urol 2013; 10: 38–48.

    CAS  PubMed  Google Scholar 

  129. van Leeuwen PJ, Roobol MJ, Kranse R, Zappa M, Carlsson S, Bul M et al. Towards an optimal interval for prostate cancer screening. Eur Urol 2012; 61: 171–176.

    PubMed  Google Scholar 

  130. Siegel RL, Miller KD, Jemal A . Cancer statistics. 2016 CA Cancer J Clin 2016; 66: 7–30.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J W Erdman Jr.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowles, J., Ranard, K., Smith, J. et al. Increased dietary and circulating lycopene are associated with reduced prostate cancer risk: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 20, 361–377 (2017). https://doi.org/10.1038/pcan.2017.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2017.25

This article is cited by

Search

Quick links