Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

SOX2 expression in the developing, adult, as well as, diseased prostate

Subjects

Abstract

Background:

SOX2 is a member of SOX (SRY-related high mobility group box) family of transcription factors.

Methods:

In this study, we examined the expression of SOX2 in murine and human prostatic specimens by immunohistochemistry.

Results:

We found that SOX2 was expressed in murine prostates during budding morphogenesis and in neuroendocrine (NE) prostate cancer (PCa) murine models. Expression of SOX2 was also examined in human prostatic tissue. We found that SOX2 was expressed in 26 of the 30 BPH specimens. In these BPH samples, expression of SOX2 was limited to basal epithelial cells. In contrast, 24 of the 25 primary PCa specimens were negative for SOX2. The only positive primary PCa was the prostatic NE tumor, which also showed co-expression of synaptophysin. Additionally, the expression of SOX2 was detected in all prostatic NE tumor xenograft lines. Furthermore, we have examined the expression of SOX2 on a set of tissue microarrays consisting of metastatic PCa tissues. Expression of SOX2 was detected in at least one metastatic site in 15 of the 24 patients with metastatic castration-resistant PCa; and the expression of SOX2 was correlated with synaptophysin.

Conclusions:

SOX2 was expressed in developing prostates, basal cells of BPH, as well as prostatic NE tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bowles J, Schepers G, Koopman P . Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000; 227: 239–255.

    Article  CAS  PubMed  Google Scholar 

  2. Schepers GE, Teasdale RD, Koopman P . Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002; 3: 167–170.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  4. Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R . Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol 2008; 317: 296–309.

    Article  CAS  PubMed  Google Scholar 

  5. Tompkins DH, Besnard V, Lange AW, Wert SE, Keiser AR, Smith AN et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One 2009; 4: e8248.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 2010; 5: e11022.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ugolkov AV, Eisengart LJ, Luan C, Yang XJ . Expression analysis of putative stem cell markers in human benign and malignant prostate. Prostate 2011; 71: 18–25.

    Article  PubMed  Google Scholar 

  8. Bae KM, Su Z, Frye C, McClellan S, Allan RW, Andrejewski JT et al. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J Urol 2010; 183: 2045–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 2011; 3: 230–238.

    Article  CAS  PubMed  Google Scholar 

  10. Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB et al. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PLoS One 2013; 8: e53701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L et al. SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung cancer cells. PLoS One 2012; 7: e36326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stolzenburg S, Rots MG, Beltran AS, Rivenbark AG, Yuan X, Qian H et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res 2012; 40: 6725–6740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Basu-Roy U, Seo E, Ramanathapuram L, Rapp TB, Perry JA, Orkin SH et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 2012; 31: 2270–2282.

    Article  CAS  PubMed  Google Scholar 

  14. Xiang R, Liao D, Cheng T, Zhou H, Shi Q, Chuang TS et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer 2011; 104: 1410–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Girouard SD, Laga AC, Mihm MC, Scolyer RA, Thompson JF, Zhan Q et al. SOX2 contributes to melanoma cell invasion. Lab Invest 2012; 92: 362–370.

    Article  CAS  PubMed  Google Scholar 

  16. Lin F, Lin P, Zhao D, Chen Y, Xiao L, Qin W et al. Sox2 targets cyclinE, p27 and survivin to regulate androgen-independent human prostate cancer cell proliferation and apoptosis. Cell Prolif 2012; 45: 207–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laga AC, Lai CY, Zhan Q, Huang SJ, Velazquez EF, Yang Q et al. Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. Am J Pathol 2010; 176: 903–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sholl LM, Long KB, Hornick JL . Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol 2010; 18: 55–61.

    Article  CAS  PubMed  Google Scholar 

  19. Wang W, Epstein JI . Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am J Surg Pathol 2008; 32: 65–71.

    Article  PubMed  Google Scholar 

  20. Yao JL, Madeb R, Bourne P, Lei J, Yang X, Tickoo S et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol 2006; 30: 705–712.

    Article  PubMed  Google Scholar 

  21. Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 2004; 64: 9209–9216.

    Article  CAS  PubMed  Google Scholar 

  22. Mosquera JM, Beltran H, Park K, MacDonald TY, Robinson BD, Tagawa ST et al. Concurrent AURKA and MYCN gene amplifications are harbingers of lethal treatment-related neuroendocrine prostate cancer. Neoplasia 2013; 15: 1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grabowska MM, Degraff DJ, Yu X, Jin RJ, Chen Z, Borowsky AD et al. Mouse models of prostate cancer: picking the best model for the question. Cancer Metastasis Rev 2014 (in press).

  24. Kasper S, Sheppard PC, Yan Y, Pettigrew N, Borowsky AD, Prins GS et al. Development, progression, and androgen-dependence of prostate tumors in probasin-large T antigen transgenic mice: a model for prostate cancer. Lab Invest 1998; 78: 319–334.

    CAS  PubMed  Google Scholar 

  25. Masumori N, Thomas TZ, Case T, Paul M, Kasper S, Chaurand P et al. A probasin-large T antigen transgenic mouse line develops prostate adeno and neuroendocrine carcinoma with metastatic potential. Cancer Res 2001; 61: 2239–2249.

    CAS  PubMed  Google Scholar 

  26. Chiaverotti T, Couto SS, Donjacour A, Mao JH, Nagase H, Cardiff RD et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am J Pathol 2008; 172: 236–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Masumori N, Tsuchiya K, Tu WH, Lee C, Kasper S, Tsukamoto T et al. An allograft model of androgen independent prostatic neuroendocrine carcinoma derived from a large probasin promoter-T antigen transgenic mouse line. J Urol 2004; 171: 439–442.

    Article  PubMed  Google Scholar 

  28. Yu X, Wang YQ, Jiang M, Bierie BB, Hayward SW, Shen MM et al. Activated beta-catenin in mouse prostate causes HGPIN and continuous prostate growth after castration. Prostate 2009; 69: 249–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu X, Wang Y, DeGraff DJ, Wills ML, Matusik RJ . Wnt/beta-Catenin activation promotes prostate tumor progression in a mouse model. Oncogene 2011; 30: 1868–1879.

    Article  CAS  PubMed  Google Scholar 

  30. Mirosevich J, Gao N, Matusik RJ . Expression of Foxa transcription factors in the developing and adult murine prostate. Prostate 2005; 62: 339–352.

    Article  CAS  PubMed  Google Scholar 

  31. Sramkoski RM, Pretlow TG 2nd, Giaconia JM, Pretlow TP, Schwartz S, Sy MS et al. A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 1999; 35: 403–409.

    Article  CAS  PubMed  Google Scholar 

  32. Dagvadorj A, Tan SH, Liao Z, Cavalli LR, Haddad BR, Nevalainen MT . Androgen-regulated and highly tumorigenic human prostate cancer cell line established from a transplantable primary CWR22 tumor. Clin Cancer Res 2008; 14: 6062–6072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang M, Strand DW, Fernandez S, He Y, Yi Y, Birbach A et al. Functional remodeling of benign human prostatic tissues in vivo by spontaneously immortalized progenitor and intermediate cells. Stem Cells 2010; 28: 344–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beltran H, Tagawa ST, Park K, MacDonald T, Milowsky MI, Mosquera JM et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J Clin Oncol 2012; 30: e386–e389.

    Article  PubMed  Google Scholar 

  35. Mirosevich J, Gao N, Gupta A, Shappell SB, Jove R, Matusik RJ . Expression and role of Foxa proteins in prostate cancer. Prostate 2006; 66: 1013–1029.

    Article  CAS  PubMed  Google Scholar 

  36. Simon RA, di Sant'Agnese PA, Huang LS, Xu H, Yao JL, Yang Q et al. CD44 expression is a feature of prostatic small cell carcinoma and distinguishes it from its mimickers. Hum Pathol 2009; 40: 252–258.

    Article  CAS  PubMed  Google Scholar 

  37. Palapattu GS, Wu C, Silvers CR, Martin HB, Williams K, Salamone L et al. Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 2009; 69: 787–798.

    Article  CAS  PubMed  Google Scholar 

  38. Sotomayor P, Godoy A, Smith GJ, Huss WJ . Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 2009; 69: 401–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families who were willing to participate in the Prostate Cancer Donor Program and the physicians and the rapid autopsy team at the University of Washington. This research was supported by: NIH to RM (5R01 DK055748-14 and 4R01 CA076142-14); DOD to RM (PC074022); DOD to XY (PC111074); NIH to SWH (5R01 DK067049); Pacific Northwest Prostate Cancer SPORE (P50CA97186); PO1 NIH grant (PO1CA085859); and Richard M. Lucas Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Yu or R J Matusik.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Cates, J., Morrissey, C. et al. SOX2 expression in the developing, adult, as well as, diseased prostate. Prostate Cancer Prostatic Dis 17, 301–309 (2014). https://doi.org/10.1038/pcan.2014.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2014.29

This article is cited by

Search

Quick links