Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Research

Prostate cancer susceptibility genes on 8p21–23 in a Dutch population

Abstract

Background:

Prostate cancer is the most commonly diagnosed cancer in men in Europe and the United States. Numerous studies have indicated genetics to have a major role in the aetiology of this disease; as much as 42% of the risk may be explained by heritable factors. Genome-wide association studies have detected an association between prostate cancer and chromosome 8p21–23. In this study, we analysed eight microsatellite (MS) markers in that region in order to confirm previous results and narrow down the location of candidate prostate cancer genes.

Methods:

292 cases and 278 controls were selected from the Netherlands Cohort Study (NLCS). The following MSs were used in the analyses: D8S136, D8S1734, D8S1742, D8S261, D8S262, D8S351, D8S511 and D8S520. Associations were evaluated using a χ2 test and logistic regression. We checked for any effects on the association by tumour stage.

Results:

Associations that were found confirmed previous research that pointed to the 8p21–23 region. Two MSs: D8S136 (odds ratio (OR), 0.69; P=4.00 × 10−28), and D8S520 (OR, 0.80; P=3.37 × 10−11), were consistently and strongly related with prostate cancer. Genotype analysis showed an additive effect for D8S136 (P-trend=6.22 × 10−03) and D8S520 (P-trend=2.62 × 10−22), suggesting an increased risk for people with a short number of repeats on both alleles at those markers.

Conclusions:

This study provides strong evidence that the 8p21–23 region is likely to harbour prostate cancer genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  2. Ferlay J, Parkin DM, Steliarova-Foucher E . Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 2010; 46: 765–781.

    Article  CAS  PubMed  Google Scholar 

  3. Crawford ED . Epidemiology of prostate cancer. Urology 2003; 62 (6 Suppl 1): 3–12.

    Article  PubMed  Google Scholar 

  4. Zeegers MP, Jellema A, Ostrer H . Empiric risk of prostate carcinoma for relatives of patients with prostate carcinoma: a meta-analysis. Cancer 2003; 97: 1894–1903.

    Article  PubMed  Google Scholar 

  5. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343: 78–85.

    Article  CAS  PubMed  Google Scholar 

  6. Smith JR, Freije D, Carpten JD, Gronberg H, Xu J, Isaacs SD et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science 1996; 274: 1371–1374.

    Article  CAS  PubMed  Google Scholar 

  7. Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 2002; 30: 181–184.

    Article  CAS  PubMed  Google Scholar 

  8. Edwards SM, Eeles RA . Unravelling the genetics of prostate cancer. Am J Med Genet C Semin Med Genet 2004; 129C: 65–73.

    Article  PubMed  Google Scholar 

  9. Xu J, Zheng SL, Hawkins GA, Faith DA, Kelly B, Isaacs SD et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22-23. Am J Hum Genet 2001; 69: 341–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goddard KA, Witte JS, Suarez BK, Catalona WJ, Olson JM . Model-free linkage analysis with covariates confirms linkage of prostate cancer to chromosomes 1 and 4. Am J Hum Genet 2001; 68: 1197–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gibbs M, Stanford JL, Jarvik GP, Janer M, Badzioch M, Peters MA et al. A genomic scan of families with prostate cancer identifies multiple regions of interest. Am J Hum Genet 2000; 67: 100–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ishii H, Vecchione A, Murakumo Y, Baldassarre G, Numata S, Trapasso F et al. FEZ1/LZTS1 gene at 8p22 suppresses cancer cell growth and regulates mitosis. Proc Natl Acad Sci USA. 2001; 98: 10374–10379.

    Article  CAS  PubMed  Google Scholar 

  13. Xu J, Zheng SL, Komiya A, Mychaleckyj JC, Isaacs SD, Hu JJ et al. Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 2002; 32: 321–325.

    Article  CAS  PubMed  Google Scholar 

  14. Duggan D, Zheng SL, Knowlton M, Benitez D, Dimitrov L, Wiklund F et al. Two genome-wide association studies of aggressive prostate cancer implicate putative prostate tumor suppressor gene DAB2IP. J Natl Cancer Inst 2007; 99: 1836–1844.

    Article  CAS  PubMed  Google Scholar 

  15. Eeles RA, Kote-Jarai Z, Al Olama AA, Giles GG, Guy M, Severi G et al. Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 2009; 41: 1116–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eeles RA, Kote-Jarai Z, Giles GG, Olama AA, Guy M, Jugurnauth SK et al. Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 2008; 40: 316–321.

    Article  CAS  PubMed  Google Scholar 

  17. Gudmundsson J, Sulem P, Gudbjartsson DF, Blondal T, Gylfason A, Agnarsson BA et al. Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 2009; 41: 1122–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007; 39: 631–637.

    Article  CAS  PubMed  Google Scholar 

  19. Gudmundsson J, Sulem P, Rafnar T, Bergthorsson JT, Manolescu A, Gudbjartsson D et al. Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 2008; 40: 281–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gudmundsson J, Sulem P, Steinthorsdottir V, Bergthorsson JT, Thorleifsson G, Manolescu A et al. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 2007; 39: 977–983.

    Article  CAS  PubMed  Google Scholar 

  21. Murabito JM, Rosenberg CL, Finger D, Kreger BE, Levy D, Splansky GL et al. A genome-wide association study of breast and prostate cancer in the NHLBI's Framingham Heart Study. BMC Med Genet 2007; 8 (Suppl 1): S6.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sun J, Zheng SL, Wiklund F, Isaacs SD, Li G, Wiley KE et al. Sequence variants at 22q13 are associated with prostate cancer risk. Cancer Res 2009; 69: 10–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas G, Jacobs KB, Yeager M, Kraft P, Wacholder S, Orr N et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 2008; 40: 310–315.

    Article  CAS  PubMed  Google Scholar 

  24. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39: 645–649.

    Article  CAS  PubMed  Google Scholar 

  25. Nam RK, Zhang W, Siminovitch K, Shlien A, Kattan MW, Klotz LH et al. New variants at 10q26 and 15q21 are associated with aggressive prostate cancer in a genome-wide association study from a prostate biopsy screening cohort. Cancer Biol Ther 2011; 12: 997–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kote-Jarai Z, Olama AA, Giles GG, Severi G, Schleutker J, Weischer M et al. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet 2011; 43: 785–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schumacher FR, Berndt SI, Siddiq A, Jacobs KB, Wang Z, Lindstrom S et al. Genome-wide association study identifies new prostate cancer susceptibility loci. Hum Mol Genet 2011; 20: 3867–3875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haiman CA, Chen GK, Blot WJ, Strom SS, Berndt SI, Kittles RA et al. Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet 2011; 43: 570–573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. FitzGerald LM, Kwon EM, Conomos MP, Kolb S, Holt SK, Levine D et al. Genome-wide association study identifies a genetic variant associated with risk for more aggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: 1196–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Penney KL, Pyne S, Schumacher FR, Sinnott JA, Mucci LA, Kraft PL et al. Genome-wide association study of prostate cancer mortality. Cancer Epidemiol Biomarkers Prev 2010; 19: 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kerns SL, Ostrer H, Stock R, Li W, Moore J, Pearlman A et al. Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2010; 78: 1292–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Takata R, Akamatsu S, Kubo M, Takahashi A, Hosono N, Kawaguchi T et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 2010; 42: 751–754.

    Article  CAS  PubMed  Google Scholar 

  33. Jorde LB, Watkins WS, Bamshad MJ, Dixon ME, Ricker CE, Seielstad MT et al. The distribution of human genetic diversity: a comparison of mitochondrial, autosomal, and Y-chromosome data. Am J Hum Genet 2000; 66: 979–988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawyer SL, Mukherjee N, Pakstis AJ, Feuk L, Kidd JR, Brookes AJ et al. Linkage disequilibrium patterns vary substantially among populations. Eur J Hum Genet 2005; 13: 677–686.

    Article  CAS  PubMed  Google Scholar 

  35. Zeegers MP, van Poppel F, Vlietinck R, Spruijt L, Ostrer H . Founder mutations among the Dutch. Eur J Hum Genet 2004; 12: 591–600.

    Article  CAS  PubMed  Google Scholar 

  36. Zeegers MP, Kiemeney LA, Nieder AM, Ostrer H . How strong is the association between CAG and GGN repeat length polymorphisms in the androgen receptor gene and prostate cancer risk? Cancer Epidemiol Biomarkers Prev 2004; 13 (11 Pt 1): 1765–1771.

    CAS  PubMed  Google Scholar 

  37. von Knobloch R, Konrad L, Barth PJ, Brandt H, Wille S, Heidenreich A et al. Genetic pathways and new progression markers for prostate cancer suggested by microsatellite allelotyping. Clin Cancer Res 2004; 10: 1064–1073.

    Article  CAS  PubMed  Google Scholar 

  38. van den Brandt PA, Goldbohm RA, van 't Veer P, Volovics A, Hermus RJ, Sturmans F . A large-scale prospective cohort study on diet and cancer in The Netherlands. J Clin Epidemiol 1990; 43: 285–295.

    Article  CAS  PubMed  Google Scholar 

  39. Zeegers MP, Khan HS, Schouten LJ, van Dijk BA, Goldbohm RA, Schalken J et al. Genetic marker polymorphisms on chromosome 8q24 and prostate cancer in the Dutch population: DG8S737 may not be the causative variant. Eur J Hum Genet 2011; 19: 118–120.

    Article  PubMed  Google Scholar 

  40. Sobin LH, Fleming ID, Union Internationale Contre le Cancer and the American Joint Committee on Cancer. TNM Classification of Malignant Tumors, fifth edition (1997).. Cancer 1997; 80: 1803–1804.

    Article  CAS  PubMed  Google Scholar 

  41. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N . Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 2004; 96: 434–442.

    Article  PubMed  Google Scholar 

  42. Trapman J, Sleddens HF, van der Weiden MM, Dinjens WN, Konig JJ, Schroder FH et al. Loss of heterozygosity of chromosome 8 microsatellite loci implicates a candidate tumor suppressor gene between the loci D8S87 and D8S133 in human prostate cancer. Cancer Res 1994; 54: 6061–6064.

    CAS  PubMed  Google Scholar 

  43. MacGrogan D, Levy A, Bostwick D, Wagner M, Wells D, Bookstein R . Loss of chromosome arm 8p loci in prostate cancer: mapping by quantitative allelic imbalance. Genes Chromosomes Cancer 1994; 10: 151–159.

    Article  CAS  PubMed  Google Scholar 

  44. Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N et al. Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 1993; 53: 3869–3873.

    CAS  PubMed  Google Scholar 

  45. Macoska JA, Trybus TM, Sakr WA, Wolf MC, Benson PD, Powell IJ et al. Fluorescence in situ hybridization analysis of 8p allelic loss and chromosome 8 instability in human prostate cancer. Cancer Res 1994; 54: 3824–3830.

    CAS  PubMed  Google Scholar 

  46. Kim JW, Cheng Y, Liu W, Li T, Yegnasubramanian S, Zheng SL et al. Genetic and epigenetic inactivation of LPL gene in human prostate cancer. Int J Cancer 2009; 124: 734–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Simard J, Dumont M, Labuda D, Sinnett D, Meloche C, El-Alfy M et al. Prostate cancer susceptibility genes: lessons learned and challenges posed. Endocr Relat Cancer 2003; 10: 225–259.

    Article  CAS  PubMed  Google Scholar 

  48. Nonaka D, Fabbri A, Roz L, Mariani L, Vecchione A, Moore GW et al. Reduced FEZ1/LZTS1 expression and outcome prediction in lung cancer. Cancer Res 2005; 65: 1207–1212.

    Article  CAS  PubMed  Google Scholar 

  49. Arnold JM, Choong DY, Lai J, Campbell IG, Chenevix-Trench G . Mutation and expression analysis of LZTS1 in ovarian cancer. Cancer Lett 2006; 233: 151–157.

    Article  CAS  PubMed  Google Scholar 

  50. Louis SN, Chow L, Rezmann L, Krezel MA, Catt KJ, Tikellis C et al. Expression and function of ATIP/MTUS1 in human prostate cancer cell lines. Prostate 2010; 70: 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  51. Chang BL, Liu W, Sun J, Dimitrov L, Li T, Turner AR et al. Integration of somatic deletion analysis of prostate cancers and germline linkage analysis of prostate cancer families reveals two small consensus regions for prostate cancer genes at 8p. Cancer Res 2007; 67: 4098–4103.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was established with financial support from the Dutch Cancer Society and the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Nekeman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Appendix 1

Appendix 1

Table a1 Odds ratios of prostate cancer by repeat size (long versus short) of eight microsatellite markers on chromosome 8p21–23

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeegers, M., Nekeman, D., Khan, H. et al. Prostate cancer susceptibility genes on 8p21–23 in a Dutch population. Prostate Cancer Prostatic Dis 16, 248–253 (2013). https://doi.org/10.1038/pcan.2013.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2013.9

Keywords

This article is cited by

Search

Quick links