Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Clinical Research

Successful whole-exome sequencing from a prostate cancer bone metastasis biopsy

Abstract

Background:

Comprehensive molecular characterization of cancer that has metastasized to bone has proved challenging, which may limit the diagnostic and potential therapeutic opportunities for patients with bone-only metastatic disease.

Methods:

We describe successful tissue acquisition, DNA extraction, and whole-exome sequencing from a bone metastasis of a patient with metastatic, castration-resistant prostate cancer (PCa).

Results:

The resulting high-quality tumor sequencing identified plausibly actionable somatic genomic alterations that dysregulate the phosphoinostide 3-kinase pathway, as well as a theoretically actionable germline variant in the BRCA2 gene.

Conclusions:

We demonstrate the feasibility of diagnostic bone metastases profiling and analysis that will be required for the widespread application of prospective ‘precision medicine’ to men with advanced PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X et al. Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci Translational Med 2011; 3: 111ra21.

    Article  Google Scholar 

  2. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P et al. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discovery 2012; 2: 82–93.

    Article  CAS  PubMed  Google Scholar 

  3. de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995–2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  5. Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, Khan AP et al. The mutational landscape of lethal castration-resistant prostate cancer. Nature 2012; 487: 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mehra R, Kumar-Sinha C, Shankar S, Lonigro RJ, Jing X, Philips NE et al. Characterization of bone metastases from rapid autopsies of prostate cancer patients. Clin Cancer Res 2011; 17: 3924–3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Febbo PG, Thorner A, Rubin MA, Loda M, Kantoff PW, Oh WK et al. Application of oligonucleotide microarrays to assess the biological effects of neoadjuvant imatinib mesylate treatment for localized prostate cancer. Clin Cancer Res 2006; 12: 152–158.

    Article  CAS  PubMed  Google Scholar 

  8. Fisher S, Barry A, Abreu J, Minie B, Nolan J, Delorey TM et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol 2011; 12: R1.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drier Y, Lawrence MS, Carter SL, Stewart C, Gabriel SB, Lander ES et al. Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability. Genome Res 2013; 23: 228–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Allen E, Wagle N, Kryukov G, Ramos A, Getz G, Garraway L . A heuristic platform for clinical interpretation of cancer genome sequencing data. J Clin Oncol 2012; (suppl; abstr 10502).

  11. Quayle SN, Lee JY, Cheung LW, Ding L, Wiedemeyer R, Dewan RW et al. Somatic mutations of PIK3R1 promote gliomagenesis. PloS One 2012; 7: e49466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 2011; 39: D945–D950.

    Article  CAS  PubMed  Google Scholar 

  13. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44: 685–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Exome Variant Server, NHLBI GO Exome Sequencing Project (ESP). Seattle, WA, USA 2012.

  15. Farrugia DJ, Agarwal MK, Pankratz VS, Deffenbaugh AM, Pruss D, Frye C et al. Functional assays for classification of BRCA2 variants of uncertain significance. Cancer Res 2008; 68: 3523–3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011; 306 (14): 1557–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123–134.

    Article  CAS  PubMed  Google Scholar 

  18. Nakabayashi M, Werner L, Courtney KD, Buckle G, Oh WK, Bubley GJ et al. Phase II trial of RAD001 and bicalutamide for castration-resistant prostate cancer. BJU Int 2012; 110: 1729–1735.

    Article  CAS  PubMed  Google Scholar 

  19. Van Allen EM, Pomerantz M . Moving toward personalized medicine in castration-resistant prostate cancer. Urol Clinics North Am 2012; 39: 483–490.

    Article  Google Scholar 

  20. Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011; 19: 575–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spritzer CE, Alfonso PD, Vinson EN, Turnbull JD, Morris KK, Foye A et al. Bone marrow biopsy: RNA isolation with expression profiling in men with metastatic castration-resistant prostate cancer - factors affecting diagnostic success. Radiology 2013; 269: 816–823.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brenner JC, Ateeq B, Li Y, Yocum AK, Cao Q, Asangani IA et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 2011; 19: 664–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ateeq B, Tomlins SA, Laxman B, Asangani IA, Cao Q, Cao X et al. Therapeutic targeting of SPINK1-positive prostate cancer. Sci Translational Med 2011; 3: 72ra17.

    Article  Google Scholar 

  24. Cibulskis K, McKenna A, Fennell T, Banks E, DePristo M, Getz G . ContEst: estimating cross-contamination of human samples in next-generation sequencing data. Bioinformatics 2011; 2718: 2601–2602.

    Article  Google Scholar 

  25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 2013; 31: 213–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Stand Up To Cancer, Prostate Cancer Foundation, Prostate Dream Team Translational Cancer Research Grants, made possible by the generous support of the Movember Foundation (EMV, AF, LAG, PGF), the Prostate Cancer Foundation (EMV, PGF), the Starr Cancer Consortium (I4-A424; LAG), the NIH (5 U01 CA157703; PGF), and the Department of Defense (W81XWH-10-PCRP-SIDA; LAG). Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research. The authors acknowledge Deborah Farlow for her project management contribution to this effort.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L A Garraway or P G Febbo.

Ethics declarations

Competing interests

Levi A Garraway is an equity holder and consultant in Foundation Medicine, a consultant to Novartis, Millenium/Takeda, and Boehringer Ingelheim, and a recipient of a grant from Novartis. Phillip G Febbo is the principal investigator on a Novartis supported trial and speaker and consultant for Janssen and Dendrion. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Allen, E., Foye, A., Wagle, N. et al. Successful whole-exome sequencing from a prostate cancer bone metastasis biopsy. Prostate Cancer Prostatic Dis 17, 23–27 (2014). https://doi.org/10.1038/pcan.2013.37

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2013.37

Keywords

This article is cited by

Search

Quick links