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Growth/differentiation factor-15: prostate cancer suppressor
or promoter?
P Vaňhara1, A Hampl1,2, A Kozubı́k3,4 and K Souček2,3

Deregulation of expression and function of cytokines belonging to the transforming growth factor-b (TGF-b) family is often
associated with various pathologies. For example, this cytokine family has been considered a promising target for cancer
therapy. However, the detailed functions of several cytokines from the TGF-b family that could have a role in cancer
progression and therapy remain unclear. One of these molecules is growth/differentiation factor-15 (GDF-15), a divergent
member of the TGF-b family. This stress-induced cytokine has been proposed to possess immunomodulatory functions and its
high expression is often associated with cancer progression, including prostate cancer (PCa). However, studies clearly
demonstrating the mechanisms for signal transduction and functions in cell interaction, cancer progression and therapy are still
lacking. New GDF-15 roles have recently been identified for modulating osteoclast differentiation and for therapy for PCa bone
metastases. Moreover, GDF-15 is as an abundant cytokine in seminal plasma with immunosuppressive properties. We discuss
studies that focus on the regulation of GDF-15 expression and its role in tissue homeostasis, repair and the immune response
with an emphasis on the role in PCa development.
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INTRODUCTION
Cancer does not merely affect a single cell or an enclosed
population of homogenous tumor cells. Thus, studying processes
that modulate the tumor microenvironment, particularly the
relationship between cancer or stromal cells and the immune
system, has immense clinical potential. New findings that describe
potential methods to modulate particular cell populations can
offer novel strategies for cancer prevention and therapy. Cytokines
represent important signaling molecules that regulate the fate
of both cancer cells and other cell types within the tumor
microenvironment. Several examples exist in clinical practice,
where revelation regarding the role of a particular cytokine in
cancer progression led to a novel anti-cancer therapy design and
significantly improved its efficiency.1

Deregulation of expression and function of cytokines belonging
to transforming growth factor-b (TGF-b) family is often associated
with cancer.2 Thus, cytokines in this family represent potential
candidates for drug targeting. However, the detailed cancer-
related functions of several TGF-b family members are still not
clear. One of these, growth/differentiation factor-15 (GDF-15), is a
divergent member of TGF-b family.3 This cytokine has been
proposed to possess immunomodulatory functions and its high
expression is often associated with cancer progression (for review
see4). However, studies clearly demonstrating its function in tissue
development and hematopoiesis and cancer progression have not
been conducted. More detailed elucidation of the physiological
function of GDF-15 may lead to innovative new cancer treatment
strategies to benefit future patients.

GDF-15 SEQUENCE AND STRUCTURE
GDF-15 (synonyms: macrophage inhibitory cytokine 1, non-
steroidal anti-inflammatory drug (NSAID) activated gene-1, pros-
tate differentiation factor, placental bone morphogenetic protein;
placental TGF-b) was discovered simultaneously by several
groups3,5 -- 8 at the end of 1990s and is localized to chromosome
19 in the region p13.11. Its DNA sequence is 2746 bp long and
consists of two exons separated by a single intron.9 There are at
least two GDF-15 alleles, which were identified and characterized
in detail by Breit’s group.10 The polymorphism, labeled H6D,
consists of a single C-G transversion in exon II at 2423 bp, resulting
in a switch from histidine to aspartic acid at codon 202 of the
mature protein. This substitution changes the biochemical
properties of the mature protein and may alter GDF-15 inter-
actions. The H6D form of GDF-15 has potential clinical relevance,
as several studies indicated better prognosis in prostate cancer
(PCa) patients carrying the G allele (H6D protein) than those with
wild-type GDF-15.11,12 According to the Hardy--Weinberg equili-
brium, the genotype frequencies in the healthy population were
estimated to be 54% for homozygotes containing only histidine
(alleles CC), 7% for aspartic acid homozygotes (GG) and 39% for
heterozygotes (CG).10

The unprocessed translated form of GDF-15 (pre-pro-GDF-15) is
308 amino-acids (aa) long, including the signal sequence (29 aa),
the propeptide (167 aa) and a mature protein (112 aa), which
contains a cysteine knot typical for the TGF-b family. The
N-terminal region (28 aa) of the proprotein was shown to be
involved in the endoplasmic reticulum quality control and
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subsequent proteasomal degradation of the incorrectly folded
GDF-15 precursor.13 The generation of the biologically active form
requires removal of the hydrophobic signal sequence followed by
disulfide-linked dimerization of GDF-15 monomers and a final
cleavage by furin-like protease at the canonic RXXR site (RRAR,
position 196). This process generates the C-terminal form of GDF-
15 with a molecular weight of B20 kDa that subsequently enters
secretion pathway.3 Further posttranslational modifications utilize
a potential N-glycosylation consensus site at 70 aa (NQS);
however, the phosphorylation of mannose residues targeting
TGF-b proteins to lysosomes has not been found,13 suggesting the
N-glycosylation of GDF-15 is probably not critical to enter the
secretory pathway as in case of TGF-b.14 The secreted mature
protein is a 25-kDa dimer cleaved from the 62-kDa intracellular
precursor.6

The production of biologically active GDF-15 is remarkably
complex, and variability in the pool of available GDF-15 forms was
suggested to be involved in modulating the tumor microenviron-
ment when differences in GDF-15 expression between malignant
and normal tissues were described. The premature proprotein is
produced preferentially by cancer cells over normal tissues, and
the preprocessed or mature GDF-15 forms have been suggested
to be differentially deposited in extracellular matrix (ECM).15

Current data supports the assertion, that it is the propeptide that
mediates interactions of pro-GDF-15 with ECM.15 Therefore, the
tissue availability of GDF-15 depends on ECM degradation,
histological composition and architecture or presence of enzymes
capable of conversion of pro-GDF-15 to GDF-15, implying a
regulation similar to TGF-b.15,16 However, direct binding of GDF-15
to latent TGF-b-binding protein-1, which normally sequesters
TGF-b and induces binding to the ECM, has not yet been
described. Interestingly, GDF-15 stimulates the expression and
surface stabilization of matrix metalloproteinases (MT1-MMP) in
different cell types, including breast cancer (MCF-7) or human
embryonic kidney cells (HEK293) that are sensitive to GDF-15-
induced growth arrest. Because GDF-15 is simultaneously a
substrate for MT1-MMP, the inhibitory effects on cancer cells are
abrogated after MT1-MMP stimulation by GDF-15. This feedback
circuit may have particular significance for ECM remodeling in the
tumor environment, tissue permeability in metastatic spreading
and for tumor growth.16 The availability of mature GDF-15 or
activation of the proprotein by ECM-deposited and microenviron-
ment-regulated proteinases increases the complexity of the
GDF-15 regulatory network in a manner tightly linked to the cell
and tissue microenvironment, especially under pathological
conditions.

GDF-15 IN TISSUE HOMEOSTASIS AND REPAIR
Expression of GDF-15 is tightly associated with conditions of stress
or damage in tissues, indicating its role in tissue regeneration or
healing, as documented in numerous cases, such as for
myocardium.17 -- 23 Because GDF-15 is not normally expressed in
the healthy heart, it is rapidly upregulated upon stress or with
markers of heart damage, such as pressure overload, inflamma-
tion, oxidative stress or ischemia, suggesting an anti-apoptotic or
protective function during heart failure, arterial hypertension or
other cardiovascular insufficiencies. GDF-15 can also offer clinical
prognostic information. For example, high-GDF-15 levels in
plasma indicate worsened outcomes for particular cardiac
malfunctions.19,20,22 -- 25 Biological functions of GDF-15 for tissue
regeneration in myocardium have not been satisfactorily clarified
so far; however, the polymorphonuclear leukocytes26 or macro-
phages27 infiltrating the effected site have been proposed as
target populations for GDF-15. The pathological accumulation of
polymorphonuclear leukocytes in infarcted myocardium may be
prevented by GDF-15 secretion, as it reduces polymorphonuclear
leukocyte adhesion by the inhibition of integrin b2 and

small GTPase signaling in vitro.26 Along with outside-in signaling,
GDF-15-mediated signal transduction in cardiomyocytes involves
the canonical SMAD pathway (SMAD2/3). Both actions not only
prevent pathological changes in tissue architecture, such as
cardiac hypertrophy and ventricular dilation, but can also inhibit
an inappropriate immune response. Under hypoxic conditions in
human umbilical vein endothelial cells in vitro, treatment with
GDF-15 significantly enhances HIF1a-mediated expression of VEGF
and also stabilizes the p53-MDM2 complex leading to ubiquitina-
tion and subsequent degradation of p53.28 Besides cardiovascular
tissue, elevated GDF-15 expression has been found in patients
with rheumatoid arthritis,29 congenital anemia30,31 and metabolic
disorders, such as obesity, diabetes mellitus or preeclampsia.32,33

In cases of ineffective hematopoiesis, GDF-15 is likely involved in
iron metabolism and erythrocyte differentiation.34 GDF-15 over-
expression was measured after mechanical liver or kidney injury 35

and was capable of inducing the renewal of specific cell
populations, including renal acid-secreting collecting duct cells.36

In mice, GDF-15 may function as a neurotrophic and neuropro-
tective cytokine, as GDF-15 knock-out mice show postnatal loss of
motoneurons in spinal cord and brainstem motor nuclei and
dorsal root ganglionic sensory neurons in superior cervical
ganglion.37 In this study, Strelau et al.37 also demonstrated that
GDF-15 produced by Schwann cells promotes the survival of
axotomized dopaminergic neurons both in vivo and in vitro.
Further investigation in ischemia-induced brain lesions showed
strong and rapid induction of GDF--15 mRNA in neurons and
partially in microglial cells; however, a comparison of identically
lesioned GDF-15-knock-out and wild-type mice did not reveal a
significant difference in infarct area, suggesting a role for GDF-15
in post-lesion adaptation and regeneration rather than general
protection or neuronal tissue nutrition.38

In addition to tissue regeneration and repair, GDF-15 is involved
in human embryonic development, as it is highly expressed in the
placenta during pregnancy, and low levels of GDF-15 in the first
weeks of gestation correlate with a higher risk of miscarriage.39 -- 41

However, GDF-15 deficient mice do not show abnormalities in the
embryonic development and are fully viable and fertile.37 Soucek
et al.42 measured high levels of GDF-15 in seminal plasma from
male donors irrespective of fertility status. Seminal GDF-15 does
not appear to influence sperm cell viability or interact with vaginal
or cervical cells, but it is capable of inhibiting the proliferation of
peripheral blood mononuclear cells in a manner similar to TGF-b-
1, but at higher effective concentrations. Moreover, GDF-15-
induced the expression of FOXP3 in the CD4þCD25þ peripheral
blood mononuclear cells population from healthy donors.42 Thus,
the role of GDF-15 in human reproduction might comprise the
meticulous regulation of the immune response during conception,
implantation and early embryonic development.
Research showing that GDF-15 is linked to low body weight,

nutritional disorders, cancer-associated cachexia and the meta-
bolic response in cancer patients may be critical for clinical
practice.32,43 -- 45 Similar effects were also observed in experimental
animals.46 Therefore, if GDF-15 contributes to complex stimulatory
or inhibitory circuits for the regulation of adipose tissue home-
ostasis, novel therapeutic approaches for the management of
unfavorable disease outcomes or therapeutic side effects may be
offered. Johnen et al.47 showed that GDF-15 can modulate both
orexigenic and anorexigenic hypothalamic mediators and there-
fore indirectly suppress food intake. However, recent results show
a direct role for GDF-15, as it was found to be expressed in
different adipose tissue depots, and being regulated by, for
example, leptin and IL1-b.48 Expression of GDF-15 is elevated in
patients with obesity comorbidities, suggesting a response to
cellular stress or tissue damage.45 Interestingly, Kim et al.49

demonstrated that breast cancer cell line MDA-MB-231 responses
to adipocyte-conditioned medium by dramatic increase of GDF-15
expression, resulting in enhanced invasivity of cancer cells.
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The physiological role for GDF-15 in adipose tissue remains largely
unknown, and further research in this field in needed.
In summary, these findings suggest a role for GDF-15 in the

regulation of immune activity, particularly for regulating the
inflammatory response and mediating tissue protection or
regeneration.

REGULATION OF GDF-15 EXPRESSION
Transcriptional regulation of GDF-15 expression is complex and
consists of several independent pathways that depend on tissue,
cellular and signaling contexts. GDF-15 is differentially expressed
in a variety of adult tissues, especially in reproductive or neural
tissue. Moreover, GDF-15 is expressed in extraembryonal tissues,
indicating some involvement in embryonic development.39 -- 41,50

This complexity in tissue distribution is reflected on the molecular
level, implying the utilization of particular transcription machinery
or tissue-specific upstream signaling. The GDF-15 promoter
sequence is conserved in murine, rat and human tissues and
consists of a TATA-like sequence as well as SP1 and AP1/2
consensus sites.9 The promoter of GDF-15 contains two distinct
p53-binding sites with different binding affinity to p53 in vitro.
Interestingly, Wong et al.51 identified a novel p53 transcriptional
repressor element in close proximity of the p53-binding sites,
suggesting a complex regulation of activation of GDF-15 in a
manner dependent on cell or signaling context. GDF-15 repre-
sents a typical gene of the adaptive response to cellular stress, as
its expression is generally low in quiescent cells, but is rapidly
enhanced by different stress stimuli that employ different
signaling pathways. Upon stimulation, GDF-15 is strongly ex-
pressed in response to NSAIDs and generally results in an
antiproliferative phenotype. NSAIDs, used commonly to treat pain
and inflammation, inhibit cyclooxygenase-1 and -2 and subse-
quently activate Egr-1 and p53 transcription factors to induce cell-
cycle arrest.52 GDF-15 was shown to be activated by NSAIDs
through the p53 pathway53 and is presumed to be one of the core
mediators of NSAID-mediated cell-cycle arrest. However, the
effects of NSAIDs on GDF-15 expression are not necessarily
mediated by cyclooxygenase inhibition,54 and other mechanisms
have been proposed. GDF-15 expression-mediated cell growth
arrest or apoptosis has been induced by various chemicals,
particularly NSAIDs, and has often required p53/p21Cip1/Waf1

activation.53 More recent studies also demonstrated p53-indepen-
dent activation of GDF-15, including GSK3b, C/EBP, ATF355 or Sp-1/
Egr-1.56 Lincova et al.57 separated the mechanisms for GDF-15
induction by NSAIDs and cell growth arrest induced by
cyclooxygenase-2 inhibition, suggesting GDF-15 transcriptional
regulation independent of cell cycle or lipid signaling. The
engagement of GDF-15 in antitumorigenic activities appears to
be highly complex, depending on the structure and pharmaco-
kinetic properties of particular NSAID or its metabolites. In APC/
Min mice fed the NSAID sulindac either as a prodrug
(DM-sulindac) or a pharmacologically active chemical with anti-
tumor effects (sulindac sulfide), GDF-15 was induced in the liver
parenchyma only with sulindac sulfide and not the prodrug.58

Similarly, GDF-15 expression follows NSAID-induced apoptosis in
oral cavity SCC1483 cancer cells, and conditioned medium
containing GDF-15 potently inhibits proliferation of these cells.59

The direct effects of GDF-15-mediated inhibition of cancer cell
growth were also described in ovarian cancer cell lines SKOV3 and
OVCAR3 that were treated with different NSAIDs.60

A number of plant-derived organic compounds promising novel
anti-tumor effects were shown to induce GDF-15 expression that
was preceded by p53 activation (e.g., organosulfuryl structures).61

Heavy metals, DNA damaging agents, hypoxia or high cell density
also stimulate GDF-15 expression in a p53-dependent manner.62

In addition, particular saponins induce GDF-15 in a PI3K-
dependent manner.63 Further evidence that GDF-15 has a role

in cellular stress responses was presented in the work of
Schlittenhardt et al., which showed enhanced expression of
GDF-15 induced by oxidized low-density lipoproteins, TNFa,
certain ceramides or hydrogen peroxide. This group also
demonstrated the immunohistochemical colocalization of GDF-
15 with PARP, caspase-3, manganese, super-oxide dismutase, c-
Jun and p53 in native atherosclerotic tissue.64 Taken together,
these findings suggest that GDF-15 can be induced by a broad
spectrum of cellular or tissue events leading to activation of
different intracellular pathways that result in complex phenotypes.

GDF-15 IN CANCER PROGRESSION, SYSTEMIC AND IMMUNE
RESPONSE
GDF-15 is generally considered to be part of the cell’s
antitumorigenic actions, largely because its expression is crucial
for the chemopreventive effects of various compounds.57,58

However, elevated GDF-15 expression has often been reported
during cancer progression, including gastric, ovarian, prostate or
breast cancers (see Table 1) with various impact on tumors.4,65,66

Despite that the GDF-15 expression profile has been well
described in various cancers, its specific role in tumor develop-
ment remains unclear (Figure 1). For example, in breast or gastric
cancer, GDF-15 has been shown to be upregulated upon the
activation of the MAPK-ERK1/2 or PKB/Akt pathways recruiting the
SP-1 family of transcription factors.67 GDF-15 also induces the
phosphorylation and activation of ErbB receptors, mTOR/Akt and
ERK1/2 pathways. A potential result of these signal integrations is
HIF-1 and VEGF activation. Moreover, inhibition or specific
downregulation of ErbB2 also inhibited GDF-15-mediated down-
stream signaling.68 These findings indicate the importance of GDF-
15 clinically, especially in ErbB2 (HER2)-positive cancers that are
sensitive to small molecular inhibitors, such as lapatinib.69 GDF-15
is strongly upregulated in hepatocellular carcinoma and other liver
diseases, such as fibrosis or cirrhosis induced by hepatitis C virus.70

GDF-15 autocrine signaling of transformed or infected hepato-
cytes then induces Akt, GSK-3/b catenin, Raf phosphorylation
and other downstream targets, such as cell-cycle regulators
(cyclins A2, E1 and D2) or adhesion molecules (E-cadherin).
Interestingly, impairing GDF-15 can inhibit viral replication.70 In
malignant melanomas, GDF-15 is highly overexpressed,71 and it is
able to mimic VEGF in the neovascularization in the tumor site.72

Similarly, in malignant glioblastomas, GDF-15 is upregulated as a
reaction to anoxia, suggesting more general involvement in
vascularization development.73 Moreover, experimental decrease
in GDF-15 expression clearly enhanced natural killer T-cell-
mediated cytotoxicity, which increased the immunogenicity of
glioma cells74 similar to the effects of TGF-b downregulation.75

Furthermore, GDF-15 depletion delays the growth of gliomas in
mice in vivo. It is likely that GDF-15 acts as a potent suppressor of
immune cells while simultaneously enhancing cancer cell growth
through autocrine signaling. These observations emphasize the
importance of assessing the role of the interactions within the
tumor microenvironment for a context-dependent role of GDF-15.
Interestingly, two antagonistic in vivo studies were published
recently. Senapati et al.76 demonstrated that ectopic overexpres-
sion of GDF-15 led to increased dissemination capacity of PCa
cells. However, Zimmers et al.58 showed that loss of GDF-15
expression abolished the chemopreventive effects of NSAIDs in
animal models of hereditary colon cancer.
Thus, the primary effect of GDF-15 on cancer progression can

be linked to the regulation of immune responses in the process of
tissue regeneration. GDF-15 has been described as a negative
regulator of macrophage activation by suppressing the release of
TNF-a, IL-1, IL-2 and MCS-F, thus inhibiting the positive feedback
of local inflammatory signaling similar to the effects of TGF-b.3

However, the molecular mechanisms behind these immunosup-
pressive effects remain unclear despite several hypotheses that
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Figure 1. Schematic illustration of growth/differentiation factor-15 (GDF-15) action in tissue microenvironment and cancer progression.
(a) GDF-15 is secreted by a primary tumor or released from extracellular matrix, affecting both the tumor and adjacent stromal or immune
cells responsive to GDF-15. (b) GDF-15 is released to blood stream and contributing to tumor spreading, vascularization and immu-
nosuppression. (c) GDF-15 is involved in remodeling of bone architecture by action on both osteoblasts and osteoclasts, affecting the
bone-marrow microenvironment and stem-cell niche formation. (d) GDF-15 expression is induced upon various stimuli, for example, by p53
and/or Sp1-Egr-1 dependent transcription. GDF-15 induces signaling pathway comprising of so far identified SMAD, MAPK and Akt and
activating transcription from SMAD, AP-1 and Sp-1 driven promoters.

Table 1. Clinical and biological aspects of GDF-15 expression in different cancer types

Cancer type Clinical prognostic
information

Expression change and
upstream regulation

Downstream signaling
induced by GDF-15

Molecular and/or cellular
phenotype induced by
GDF-15

References

Bladder Candidate epigenetic
biomarker

? ? ? 101

Breast ? m via AKT
ERK1/2 --mTOR

ErbB2--AKT--ERK1/2 --
c-Src --p38-- JNK

Enhanced invasion via
c-Src

67,68,81,102

Colorectal Association with tumor
progression

m via p53 ? p53 dependent apoptosis 103,104

Gastric Candidate biomarker m EGFR(ErbB2) --MAPK1/2 --
ERK 1/2 --Akt/mTOR

HIF-1a --VEGFA
expression

65,68

Glioblastoma Candidate biomarker m ? Enhanced proliferation
immune escape in vivo

74,105

Hepatocellular
(HCV associated)

Candidate biomarker m AKT--GSK-3b -- c-Raf Enhanced proliferation
and invasion

70

Head and neck Associated with
radioresistant phenotype

m ? ? 106

Melanoma Association with tumor
progression, metastases
formation and vascular
development

m via B-Raf ? B-Raf --GDF-15
dependent
vascularization

66,71,72

Oesophagus/
gastric

Elevated; association with
inflammation

m ? ? 107

Ovarian Prognostic biomarker m ? ? 50,108

Pancreas Candidate biomarker m ? ? 109,110

Prostate Prognostic biomarker m PKB/Akt -- FAK/RhoA Reorganization of actin
architecture enhanced
motility metastatic
development in vivo

57,76,79,

86,89,111

Abbreviations: FAK, focal adhesion kinases; GDF-15, growth/differentiation factor-15; JNK, c-Jun N-terminal kinase; mTOR, mammalian target of rapamycin.
m Indicates elevated expression, ? indicates unknown or so far insufficient data.
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focus on interactions with regulatory T lymphocytes in a context
already defined for TGF-b in various cancers.42,77 Taken together,
the cancer-associated elevated expression of GDF-15 may have
strong predictive potential that could justify the introduction of
GDF-15 clinically as a biomarker for particular cancers. Moreover,
focusing on its immunosuppressive characteristics, GDF-15 may
be specifically targeted to restore the immune-mediated anti-
tumor response.

GDF-15 IN PCA
GDF-15 as a biomarker
For PCa, there is a long-term need for both specific and robust
markers that would allow precise prediction and estimation of
disease outcome. At, present, only PSA was introduced to clinical
practice. However, total levels of PSA in serum are not cancer
specific, as they are found even in benign diseases, leading to
potential false-positive diagnosis of PCa. Improvement was
achieved by analyzing alternative molecular forms of PSA, which
decreased the number of cancer-negative biopsies in indicated
cases.78 Of particular importance, the measurement of GDF-15 in
serum was shown to increase the precision of the information
potential of PSA and its forms. The presence of GDF-15 in serum is
slightly decreased in BPH or localized PCa compared with normal
prostate tissue,79 but it is elevated in metastatic disease.80,81

Interestingly, the inflammatory events in prostate tissue are
considered to trigger the transition from normal to benign
hyperplasic state and probably reflect an individual’s sensitivity to
autoimmune lesions.82,83 Inflammatory changes of glandular
architecture followed by increase of stromal tissue in BPH
negatively correlate with GDF-15 expression.84,85

Despite the presence of several molecular forms of GDF-15, the
analysis of total GDF-15 serum levels showed its clear discrimina-
tive capacity for PCa mortality and disease outcome, which
justifies further prospective studies to potentially introduce
GDF-15 as a clinically important biomarker for PCa.86 As such, the
analysis of overall GDF-15 may offer a robust screening method.

Role of GDF-15 in PCa development
Tumor development can be considered either as uncontrolled
regeneration or as cellular reprogramming or reversion to the
early developmental stages. Thus, lessons from embryonic
development can shed light on the complex signaling in
organogenesis and tissue formation. In the early development of
the normal mouse prostate, GDF-15 is dynamically expressed in
dividing epithelium originating from the urogenital sinus and
buds, and its expression falls when the stage of developed
prostate lobes has been reached.87 GDF-15 is then reactivated
during prostate maturation, and its expression correlates with
differentiation markers (e.g., K19). Thus, data from embryonic, fetal
and early postnatal murine development suggest a clear dual
function for GDF-15 in the regulation of epithelial proliferation in
the urogenital sinus as well as its differentiation in the later stages
of prostate lobular structure formation.87 A PCa model based on
modified SV-40 region driven by the prostate-specific rat probasin
promoter developed by Kasper et al.88 (CD-1-Tg(Pbsn-Tag)
12T10Rjm, according to the Cancer Model Database) allowed
for the detailed study of GDF-15 in the development of prostate
intraepithelial neoplasias, which is considered comparable to
human prostate intraepithelial neoplasias. Using this model,
Noorali et al.87 showed clear differences in GDF-15 expression
among normally developing prostate, prostate hyperplasia and
prostate intraepithelial neoplasias. Although the GDF-15 pattern of
expression in normal tissue shows two clear peaks (epithelial
proliferation in buds and lobes, differentiation of mature prostate),
its expression is attenuated in the maturing prostate and is
accompanied with a loss of differentiation markers in transgenic

tissue showing progression from hyperplasia to prostate intrae-
pithelial neoplasias. Furthermore, GDF-15 expression is strongly
upregulated in the tumorigenic state that follows. Moreover, GDF-
15 expression is enhanced in developed PCa similar to other
cancer types.
Despite that there is low genetic variation in the GDF-15 coding

sequence, and existing single nucleotide polymorphisms were not
associated with PCa susceptibility,89 the function of wild-type
GDF-15 and its H6D variant can be discriminated in developed
PCa. In athymic nude mice inoculated with DU145 PCa cells
transfected with appropriate coding sequences, the H6D variant
clearly interfered with tumor development by lowering levels of
cyclin D1 and IGF-1 in the serum resulting in smaller tumors than
in controls with wild-type GDF-15.90 However, the systemic role
for body-weight regulation and the induction of tumor associated
cachexia is likely not compromised in the H6D variant compared
with wild-type GDF-15, as both proteins significantly reduce the
amount of abdominal fat in experimental mice and reduce
adipose tissue signaling.90

A common problem associated with long-term PCa therapy is
the development of hormone refractory PCa and resistance
to chemotherapy. It is estimated that about 50% of patients
treated by first-line castration do not respond to second-line of
chemotherapy with Docetaxel.91 The expression of GDF-15 in PC3
cells with acquired resistance to Docetaxel is increased after
chemotherapy exposure compared with parental PC3s. Moreover,
a similar trend has been observed in the serum/plasma of patients
with Docetaxel-resistant PCa with a clear impact on patients’
survival.92 This correlates well with previously published data;93

however, in vitro data showed a direct link between GDF-15 and
Docetaxel resistance. Androgen independent PCa PC3 cells
treated with GDF-15 became partially resistant to Docetaxel and
Docetaxel-resistant PC3 cells treated with GDF-15 shRNA showed
restored susceptibility to Docetaxel.92

In androgen-sensitive LNCaP cells, GDF-15 is expressed and
supports proliferation and clonogenic cell growth. GDF-15
silencing in the LN3 subline of LNCaP cells, which are
characterized by a high-metastatic potential, decreased prolifera-
tion rate and reduced anchor-independent cell growth on soft
agar.94 In PC3 and DU145 cells, GDF-15 is virtually unexpressed;95

however, these cells retain sensitivity to GDF-15 under particular
conditions. The p53-negative PC3 cells responded to GDF-15
treatment by reducing mobility through matrigel columns.96

Similarly, for DU145, a slight tumor suppressive effect was
reported in vivo.90

To identify a systemic role of GDF-15 in PCa bone metastasis,
Wakchoure et al.46 inoculated athymic nude mice with DU-145
PCa cells overexpressing GDF-15. The histomorphological and
X-ray analyses showed enhanced osteoblast differentiation and
bone-remodeling activity in sites of bone metastases. This study
also showed enhanced osteoclast numbers in metastasis sites;
however, using an in vitro macrophage model, another study
demonstrated clear inhibitory effects of GDF-15 on osteoclast
formation. Under experimental in vitro conditions, GDF-15
inhibited MCSF-RANKL-induced osteoclast differentiation that
were derived either from the macrophage cell line RAW264.7 or
mononuclear precursors isolated from murine bone marrow.
Impaired differentiation resulted in reduced osteoclast numbers
in culture and decreased bone resorption. On the molecular
level, GDF-15 induced the retention of IkB, an inhibitor of the
NFkB transcription factor, in the cytoplasm, thus preventing
NFkB-mediated expression of the key transcription factor c-fos
and the osteoclast hallmark enzymes cathepsin K and carbonic
anhydrase II.97 Interestingly, GDF-15 is upregulated by vitamin D3
(1,25(OH)2D3) in the androgen-dependent PCa cells LNCaP.98 The
GDF-15 protein produced by 1,25(OH)2D3-stimulated LNCaP cells
was the biologically active form that interferes with MCSF-RANKL
signaling independently of osteoprotegerin, a physiological
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regulator of osteoclast differentiation and activity.97 Further
evidences for a role for GDF-15 in cancer spreading and distant
metastasis formation were reported by Senapati et al.76 This
in vitro study described enhanced motility and invasion capabili-
ties and changes in the actin cytoskeletal architecture of PC3 and
LNCaP cells overexpressing GDF-15. The induction of intracellular
signaling by GDF-15 led to the activation of focal adhesion kinases
and the small GTPase RhoA, suggesting that GDF-15 moderates
direct control over architectural rearrangements and subsequent
cell motility. However, using ovarian and prostate SKOV-3 and PC3
cells, respectively, Cheng et al.96 showed that GDF-15 inhibited
cellular migration through matrigel columns through a p53-
dependent mechanism. Similarly, GDF-15 has been described as a
mediator of NSAIDs-induced inhibition of migration of PCa cells.99

According to these experimental data, GDF-15 effects may vary
depending on signaling status, the genetic background of target
cell populations, particularly on the presence of the androgen
receptor and/or p53 activity and interaction with immune system
(Figure 2). Contextual pleiotropy and dual role in cancer, which is
general characteristic of TGF-b family cytokines100 is most likely
characteristic also of GDF-15. However, detail mechanisms of its
both tumor suppressor and/or promoter action needs to be
revealed.

CONCLUSIONS
GDF-15 is a distant member of the TGF-b family and is strongly
expressed in a great variety of human cancers including PCa;
however, its role in cancer pathophysiology remains ambiguous.
Nevertheless, the link between GDF-15 expression and the tumor
stage or disease outcome is informative, suggesting that GDF-15
may be a clinically relevant biomarker for particular cancers. The
physiological role of GDF-15 may involve mediating interactions
between different cellular populations and the immune system or
enabling mutual regulation in certain microenvironments. Thus,
the suppression of certain immune cell populations may be the
core systemic mechanism for the role of GDF-15 in cancer
development and progression. GDF-15 was first recognized as a
factor interfering with macrophage activation. Later studies
showed its inhibitory role on the effects of NSAIDs and the
suppression of macrophage-derived osteoclasts or regulatory T
lymphocytes. The role of GDF-15 in embryonic development

remains unresolved. In mice, GDF-15 is not necessary for proper
development and knockouts are fully viable and fertile; however,
in humans, it likely has a role in feto-maternal interactions and
may prevent immune rejection in utero. There is increasing
evidence for the involvement of GDF-15 in tissue regeneration or
the reaction to different stress conditions. GDF-15-mediated
suppressive effects often mimic those observed by generic TGF-
bs, but there are differences in target population responses. Of
particular importance is to clarify the intracellular signals ranging
from the receptor formation to the interacting partners that
mediate the effects of GDF-15. Increased knowledge of GDF-15-
induced signaling pathways in either producing or receptive cells
will contribute to the understanding of events that form the
complex communication network within the tumor microenviron-
ment. The nature of GDF-15 proteins has two sides, with both
tumor-suppressor and oncogenic characteristics. As the cellular,
tissue and systemic effects of GDF-15 signaling in well-defined
experimental conditions has shown, it is likely that GDF15 is an
active and important player in the development of PCa rather
than a stress-induced bystander. Therefore, introducing GDF-15
into clinical discussions may offer new possibilities to better
understand cancer development and potentially enhance diag-
nostic or therapeutic strategies.
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