Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

Identification of genetic risk associated with prostate cancer using ancestry informative markers

Abstract

Background:

Prostate cancer (PCa) is a common malignancy and a leading cause of cancer death among men in the United States with African-American (AA) men having the highest incidence and mortality rates. Given recent results from admixture mapping and genome-wide association studies for PCa in AA men, it is clear that many risk alleles are enriched in men with West African genetic ancestry.

Methods:

A total of 77 ancestry informative markers (AIMs) within surrounding candidate gene regions were genotyped and haplotyped using Pyrosequencing in 358 unrelated men enrolled in a PCa genetic association study at the Howard University Hospital between 2000 and 2004. Sequence analysis of promoter region single-nucleotide polymorphisms (SNPs) to evaluate disruption of transcription factor-binding sites was conducted using in silico methods.

Results:

Eight AIMs were significantly associated with PCa risk after adjusting for age and West African ancestry. SNP rs1993973 (intervening sequences) had the strongest association with PCa using the log-additive genetic model (P=0.002). SNPs rs1561131 (genotypic, P=0.007), rs1963562 (dominant, P=0.01) and rs615382 (recessive, P=0.009) remained highly significant after adjusting for both age and ancestry. We also tested the independent effect of each significantly associated SNP and rs1561131 (P=0.04) and rs1963562 (P=0.04) remained significantly associated with PCa development. After multiple comparisons testing using the false discovery rate, rs1993973 remained significant. Analysis of the rs156113–, rs1963562–rs615382l and rs1993973–rs585224 haplotypes revealed that the least frequently found haplotypes in this population were significantly associated with a decreased risk of PCa (P=0.032 and 0.0017, respectively).

Conclusions:

The approach for SNP selection utilized herein showed that AIMs may not only leverage increased linkage disequilibrium in populations to identify risk and protective alleles, but may also be informative in dissecting the biology of PCa and other health disparities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rodriguez C, Calle EE, Miracle-McMahill HL, Tatham LM, Wingo PA, Thun MJ et al. Family history and risk of fatal prostate cancer. Epidemiology 1997; 8: 653–657.

    Article  CAS  PubMed  Google Scholar 

  2. Berndt SI, Dodson JL, Huang WY, Nicodemus KK . A systematic review of vitamin D receptor gene polymorphisms and prostate cancer risk. J Urol 2006; 175: 1613–1623.

    Article  CAS  PubMed  Google Scholar 

  3. Ntais C, Polycarpou A, Ioannidis JP . Vitamin D receptor gene polymorphisms and risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2003; 12: 1395–1402.

    CAS  PubMed  Google Scholar 

  4. Kostner K, Denzer N, Müller CS, Klein R, Tilgen W, Reichrath J . The relevance of vitamin D receptor (VDR) gene polymorphisms for cancer: a review of the literature. Anticancer Res 2009; 29: 3511–3536.

    PubMed  Google Scholar 

  5. Raimondi S, Johansson H, Maisonneuve P, Gandini S . Review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Carcinogenesis 2009; 30: 1170–1180.

    Article  CAS  PubMed  Google Scholar 

  6. McCullough ML, Bostick RM, Mayo TL . Vitamin D gene pathway polymorphisms and risk of colorectal, breast, and prostate cancer. Annu Rev Nutr 2009; 29: 111–132.

    Article  CAS  PubMed  Google Scholar 

  7. Rebbeck TR, Rennert H, Walker AH, Panossian S, Tran T, Walker K et al. Joint effects of inflammation and androgen metabolism on prostate cancer severity. Int J Cancer 2008; 123: 1385–1389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun J, Turner A, Xu J, Grönberg H, Isaacs W . Genetic variability in inflammation pathways and prostate cancer risk. Urol Oncol 2007; 25: 250–259.

    Article  CAS  PubMed  Google Scholar 

  9. Li H, Tai BC . RNASEL gene polymorphisms and the risk of prostate cancer: a meta-analysis. Clin Cancer Res 2006; 12: 5713–5719.

    Article  CAS  PubMed  Google Scholar 

  10. Vaarala MH, Mattila H, Ohtonen P, Tammela TL, Paavonen TK, Schleutker J . The interaction of CYP3A5 polymorphisms along the androgen metabolism pathway in prostate cancer. Int J Cancer 2008; 122: 2511–2516.

    Article  CAS  PubMed  Google Scholar 

  11. Zhenhua L, Tsuchiya N, Narita S, Inoue T, Horikawa Y, Kakinuma H et al. CYP3A5 gene polymorphism and risk of prostate cancer in a Japanese population. Cancer Lett 2005; 225: 237–243.

    Article  PubMed  Google Scholar 

  12. Zeigler-Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S et al. CYP3A4, CYP3A5, and CYP3A43 genotypes and haplotypes in the etiology and severity of prostate cancer. Cancer Res 2004; 64: 8461–8467.

    Article  CAS  PubMed  Google Scholar 

  13. Plummer SJ, Conti DV, Paris PL, Curran AP, Casey G, Witte JS . CYP3A4 and CYP3A5 genotypes, haplotypes, and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2003; 12: 928–932.

    CAS  PubMed  Google Scholar 

  14. Risio M, Venesio T, Kolomoets E, Armaroli P, Gallo F, Balsamo A, et al., BECaP Working Group. Genetic polymorphisms of CYP17A1, vitamin D receptor and androgen receptor in Italian heredo-familial and sporadic prostate cancers. Cancer Epidemiol 2011; 35: e18–e24.

    Article  CAS  PubMed  Google Scholar 

  15. Meyer MS, Penney KL, Stark JR, Schumacher FR, Sesso HD, Loda M et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis 2010; 31: 1597–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martinez-Fierro ML, Leach RJ, Gomez-Guerra LS, Garza-Guajardo R, Johnson-Pais T, Beuten J et al. Identification of viral infections in the prostate and evaluation of their association with cancer. BMC Cancer 2010; 10: 326.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Beuten J, Gelfond JA, Franke JL, Shook S, Johnson-Pais TL, Thompson IM et al. Single and multivariate associations of MSR1, ELAC2, and RNASEL with prostate cancer in an ethnic diverse cohort of men. Cancer Epidemiol Biomarkers Prev 2010; 19: 588–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shea PR, Ishwad CS, Bunker CH, Patrick AL, Kuller LH, Ferrell RE . RNASEL and RNASEL-inhibitor variation and prostate cancer risk in Afro-Caribbeans. Prostate 2008; 68: 354–359.

    Article  CAS  PubMed  Google Scholar 

  19. Chen L, Davey Smith G, Evans DM, Cox A, Lawlor DA, Donovan J et al. Genetic variants in the vitamin d receptor are associated with advanced prostate cancer at diagnosis: findings from the prostate testing for cancer and treatment study and a systematic review. Cancer Epidemiol Biomarkers Prev 2009; 18: 2874–2881.

    Article  CAS  PubMed  Google Scholar 

  20. Bonilla C, Hooker S, Mason T, Bock CH, Kittles RA . Prostate cancer susceptibility loci identified on chromosome 12 in African Americans. PLoS One 2011; 6: e16044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robbins CM, Hernandez W, Ahaghotu C, Bennett J, Hoke G, Mason T et al. Association of HPC2/ELAC2 and RNASEL non-synonymous variants with prostate cancer risk in African American familial and sporadic cases. Prostate 2008; 68: 1790–1797.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kittles RA, Baffoe-Bonnie AB, Moses TY, Robbins CM, Ahaghotu C, Huusko P et al. A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J Med Genet 2006; 43: 507–511.

    Article  CAS  PubMed  Google Scholar 

  23. Kittles RA, Baffoe-Bonnie AB, Moses TY, Robbins CM, Ahaghotu C, Huusko P et al. CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification? Hum Genet 2002; 110: 553–560.

    Article  PubMed  Google Scholar 

  24. Falush D, Stephens M, Pritchard JK . Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003; 164: 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sole X, Guinó E, Valls J, Iniesta R, Moreno V . SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22: 1928–1929.

    Article  CAS  PubMed  Google Scholar 

  26. Schaid DJ, Sinnwell JP, Thibodeau SN . Robust multipoint identical-by-descent mapping for affected relative pairs. Am J Hum Genet 2005; 76: 128–138.

    Article  CAS  PubMed  Google Scholar 

  27. Hu Y, Ippolito JE, Garabedian EM, Humphrey PA, Gordon JI . Molecular characterization of a metastatic neuroendocrine cell cancer arising in the prostates of transgenic mice. J Biol Chem 2002; 277: 44462–44474.

    Article  CAS  PubMed  Google Scholar 

  28. Lu KH, Patterson AP, Wang L, Marquez RT, Atkinson EN, Baggerly KA et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res 2004; 10: 3291–3300.

    Article  CAS  PubMed  Google Scholar 

  29. Stone II R, Sabichi AL, Gill J, Lee IL, Adegboyega P, Dai MS et al. Identification of genes correlated with early-stage bladder cancer progression. Cancer Prev Res (Phila) 2010; 3: 776–786.

    Article  CAS  PubMed Central  Google Scholar 

  30. Wang SM, Ooi LL, Hui KM . Upregulation of Rac GTPase-activating protein 1 is significantly associated with the early recurrence of human hepatocellular carcinoma. Clin Cancer Res 2011; 17: 6040–6051.

    Article  CAS  PubMed  Google Scholar 

  31. Surawska H, Ma PC, Salgia R . The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 2004; 15: 419–433.

    Article  CAS  PubMed  Google Scholar 

  32. Tang XX, Zhao H, Robinson ME, Cnaan A, London W, Cohn SL et al. Prognostic significance of EPHB6, EFNB2, and EFNB3 expressions in neuroblastoma. Med Pediatr Oncol 2000; 35: 656–658.

    Article  CAS  PubMed  Google Scholar 

  33. Tang XX, Zhao H, Robinson ME, Cohen B, Cnaan A, London W et al. Implications of EPHB6, EFNB2, and EFNB3 expressions in human neuroblastoma. Proc Natl Acad Sci USA 2000; 97: 10936–10941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hafner C, Bataille F, Meyer S, Becker B, Roesch A, Landthaler M et al. Loss of EphB6 expression in metastatic melanoma. Int J Oncol 2003; 23: 1553–1559.

    CAS  PubMed  Google Scholar 

  35. Raftopoulou M, Hall A . Cell migration: Rho GTPases lead the way. Dev Biol 2004; 265: 23–32.

    Article  CAS  PubMed  Google Scholar 

  36. Dema A, Raica M, Tudose N . Prognostic significance of neuroendocrine differentiation in carcinoma of the prostate. Rom J Morphol Embryol 1996; 42: 83–88.

    CAS  PubMed  Google Scholar 

  37. Morgan TO, Jacobsen SJ, McCarthy WF, Jacobson DJ, McLeod DG, Moul JW . Age-specific reference ranges for prostate-specific antigen in black men. N Engl J Med 1996; 335: 304–310.

    Article  CAS  PubMed  Google Scholar 

  38. Moul JW, Sesterhenn IA, Connelly RR, Douglas T, Srivastava S, Mostofi FK et al. Prostate-specific antigen values at the time of prostate cancer diagnosis in African-American men. JAMA 1995; 274: 1277–1281.

    Article  CAS  PubMed  Google Scholar 

  39. D’Amico AV, Cote K, Loffredo M, Renshaw AA, Chen MH . Pretreatment predictors of time to cancer specific death after prostate specific antigen failure. J Urol 2003; 169: 1320–1324.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported in whole or in part with Federal funds from the National Center for Research Resources (NCRR) (UL1RR031975), National Institutes of health (NIH), through the Clinical and Translational Science Awards Program (CTSA), from the RCMI Program at Howard University (G12 RR003048), Division of Research Infrastructure, NCRR, NIH and the Howard University Cancer Center/Johns Hopkins Cancer Center Partnership (U54 CA091431), NCI, NIH.

Author contributions

LJR-S, VA, TM and GB participated in the design of the study, performed the statistical analysis and helped draft the manuscript. TM, BW, MA, WH, SH and MD carried out the molecular genetic studies, participated in SNP annotation, and helped draft the manuscript. CA, GD and RK conceived the study, participated in its design and coordination and helped to draft the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L J Ricks-Santi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ricks-Santi, L., Apprey, V., Mason, T. et al. Identification of genetic risk associated with prostate cancer using ancestry informative markers. Prostate Cancer Prostatic Dis 15, 359–364 (2012). https://doi.org/10.1038/pcan.2012.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2012.19

Keywords

This article is cited by

Search

Quick links