Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

Adiponectin inhibits oxidative stress in human prostate carcinoma cells

Abstract

Background:

Emerging data suggest that obesity increases the risk of aggressive prostate cancer (PC), but the mechanisms underlying this relationship remain to be fully elucidated. Oxidative stress (OS) is a key process in the development and progression of PC. Adiponectin, an adipocyte-specific hormone, circulates at relatively high levels in healthy humans, but at reduced levels in obese subjects. Moreover, case–control studies also document lower levels of serum adiponectin in PC patients compared with healthy individuals.

Methods:

Human 22Rv1 and DU-145 PC cell lines were examined for the generation of OS and detoxification of reactive oxygen species after treatment with adiponectin. Normality was confirmed using the Shapiro–Wilk test and results were analyzed using a one-way analysis of variance.

Results:

We demonstrate that adiponectin increased cellular anti-oxidative defense mechanisms and inhibited OS in a significant and dose-dependent manner. We show that adiponectin treatment decreased the generation of superoxide anion in both cell lines, whereas the transcript levels of NADPH oxidase (NOX)2 and NOX4 increased. We also found indications of an overall anti-oxidative effect, as the total anti-oxidative potential, catalase activity and protein levels, and manganese superoxide dismutase protein levels increased significantly (P<0.05) in both cell lines after treatment with adiponectin.

Conclusion:

Lower levels of adiponectin in obese individuals may result in higher levels of prostatic OS, which may explain the clinical association between obesity, hypoadiponectinemia and PC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Andersson SO, Wolk A, Bergstrom R, Adami HO, Engholm G, Englund A et al. Body size and prostate cancer: a 20-year follow-up study among 135006 Swedish construction workers. J Natl Cancer Inst 1997; 89: 385–389.

    Article  CAS  PubMed  Google Scholar 

  2. Gong Z, Neuhouser ML, Goodman PJ, Albanes D, Chi C, Hsing AW et al. Obesity, diabetes, and risk of prostate cancer: results from the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2006; 15: 1977–1983.

    Article  PubMed  Google Scholar 

  3. Gong Z, Agalliu I, Lin DW, Stanford JL, Kristal AR . Obesity is associated with increased risks of prostate cancer metastasis and death after initial cancer diagnosis in middle-aged men. Cancer 2007; 109: 1192–1202.

    Article  PubMed  Google Scholar 

  4. Rodriguez AR, Kapoor R, Pow-Sang JM, Rodriguez C, Freedland SJ, Deka A et al. Laparoscopic extraperitoneal radical prostatectomy in complex surgical cases. Body mass index, weight change, and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. J Urol 2007; 177: 1765–1770.

    Article  PubMed  Google Scholar 

  5. Buschemeyer III WC, Freedland SJ . Obesity and prostate cancer: epidemiology and clinical implications. Eur Urol 2007; 52: 331–343.

    Article  PubMed  Google Scholar 

  6. Hsieh K, Albertsen PC, Hsieh LJ, Carter HB, Landis PK, Tucker KL et al. Populations at high risk for prostate cancer. Association of energy intake with prostate cancer in a long-term aging study: Baltimore Longitudinal Study of Aging. Urol Clin North Am 2003; 30: 669–676.

    Article  PubMed  Google Scholar 

  7. Schuurman AG, van den Brandt PA, Dorant E, Brants HA, Goldbohm RA . Association of energy and fat intake with prostate carcinoma risk: results from The Netherlands Cohort Study. Cancer 1999; 86: 1019–1027.

    Article  CAS  PubMed  Google Scholar 

  8. Gavrila A, Chan JL, Yiannakouris N, Kontogianni M, Miller LC, Orlova C et al. Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies. J Clin Endocrinol Metab 2003; 88: 4823–4831.

    Article  CAS  PubMed  Google Scholar 

  9. Trujillo ME, Scherer PE . Adipose tissue-derived factors: impact on health and disease. Endocr Rev 2006; 27: 762–778.

    Article  CAS  PubMed  Google Scholar 

  10. Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S . Prostate cancer and adiponectin. Urology 2005; 65: 1168–1172.

    Article  PubMed  Google Scholar 

  11. Michalakis K, Williams CJ, Mitsiades N, Blakeman J, Balafouta-Tselenis S, Giannopoulos A et al. Serum adiponectin concentrations and tissue expression of adiponectin receptors are reduced in patients with prostate cancer: a case control study. Cancer Epidemiol Biomarkers Prev 2007; 16: 308–313.

    Article  CAS  PubMed  Google Scholar 

  12. Mistry T, Digby JE, Desai KM, Randeva HS . Obesity and prostate cancer: a role for adipokines. Eur Urol 2007; 52: 46–53.

    Article  CAS  PubMed  Google Scholar 

  13. Freedland SJ, Sokoll LJ, Platz EA, Mangold LA, Bruzek DJ, Mohr P et al. Association between serum adiponectin, and pathological stage and grade in men undergoing radical prostatectomy. J Urol 2005; 174 (Part 1): 1266–1270.

    Article  CAS  PubMed  Google Scholar 

  14. Li H, Stampfer MJ, Mucci L, Rifai N, Qiu W, Kurth T et al. A 25-year prospective study of plasma adiponectin and leptin concentrations and prostate cancer risk and survival. Clin Chem 2010; 56: 34–43.

    Article  CAS  PubMed  Google Scholar 

  15. Bianchi-Frias D, Vakar-Lopez F, Coleman IM, Plymate SR, Reed MJ, Nelson PS . The effects of aging on the molecular and cellular composition of the prostate microenvironment. PLoS One 2010; 5: pii e12501.

    Article  Google Scholar 

  16. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007; 7: 256–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinthus JH, Bryskin I, Trachtenberg J, Lu JP, Singh G, Fridman E et al. Androgen induces adaptation to oxidative stress in prostate cancer: implications for treatment with radiation therapy. Neoplasia 2007; 9: 68–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arsova-Sarafinovska Z, Eken A, Matevska N, Erdem O, Sayal A, Savaser A et al. Increased oxidative/nitrosative stress and decreased antioxidant enzyme activities in prostate cancer. Clin Biochem 2009; 42: 1228–1235.

    Article  CAS  PubMed  Google Scholar 

  19. Guichard C, Moreau R, Pessayre D, Epperson TK, Krause KH . NOX family NADPH oxidases in liver and in pancreatic islets: a role in the metabolic syndrome and diabetes? Biochem Soc Trans 2008; 36 (Part 5): 920–929.

    Article  CAS  PubMed  Google Scholar 

  20. Bonekamp NA, Volkl A, Fahimi HD, Schrader M . Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 2009; 35: 346–355.

    Article  CAS  PubMed  Google Scholar 

  21. Goldstein BJ, Scalia R . Adiponectin: A novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 2004; 89: 2563–2568.

    Article  CAS  PubMed  Google Scholar 

  22. Luo Z, Saha AK, Xiang X, Ruderman NB . AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 2005; 26: 69–76.

    Article  CAS  PubMed  Google Scholar 

  23. Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN . The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev Res (Phila) 2008; 1: 369–375.

    Article  CAS  Google Scholar 

  24. Kumar B, Koul S, Khandrika L, Meacham RB, Koul HK . Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 2008; 68: 1777–1785.

    Article  CAS  PubMed  Google Scholar 

  25. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF . Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 1978; 21: 274.

    Article  CAS  PubMed  Google Scholar 

  26. Sramkoski RM, Pretlow II TG, Giaconia JM, Pretlow TP, Schwartz S, Sy MS et al. A new human prostate carcinoma cell line, 22Rv1. In Vitro Cell Dev Biol Anim 1999; 35: 403–409.

    Article  CAS  PubMed  Google Scholar 

  27. Choi HS, Kim JW, Cha YN, Kim C . A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem 2006; 27: 31–44.

    Article  CAS  PubMed  Google Scholar 

  28. Rook GA, Steele J, Umar S, Dockrell HM . A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon. J Immunol Methods 1985; 82: 161–167.

    Article  CAS  PubMed  Google Scholar 

  29. Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS . Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 2004; 279: 34643–34654.

    Article  CAS  PubMed  Google Scholar 

  30. Lin H, Lu JP, Laflamme P, Qiao S, Shayegan B, Bryskin I et al. Inter-related in vitro effects of androgens, fatty acids and oxidative stress in prostate cancer: a mechanistic model supporting prevention strategies. Int J Oncol 2009; 37: 761–766.

    Google Scholar 

  31. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003; 423: 762–769.

    Article  CAS  PubMed  Google Scholar 

  32. Kadowaki T, Yamauchi T . Adiponectin and adiponectin receptors. Endocr Rev 2005; 26: 439–451.

    Article  CAS  PubMed  Google Scholar 

  33. Rivera J, Sobey CG, Walduck AK, Drummond GR . Nox isoforms in vascular pathophysiology: insights from transgenic and knockout mouse models. Redox Rep 2010; 15: 50–63.

    Article  CAS  PubMed  Google Scholar 

  34. De Marzo AM, DeWeese TL, Platz EA, Meeker AK, Nakayama M, Epstein JI et al. Pathological and molecular mechanisms of prostate carcinogenesis: implications for diagnosis, detection, prevention, and treatment. J Cell Biochem 2004; 91: 459–477.

    Article  CAS  PubMed  Google Scholar 

  35. Khandrika L, Kumar B, Koul S, Maroni P, Koul HK . Oxidative stress in prostate cancer. Cancer Lett 2009; 282: 125–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee WH, Morton RA, Epstein JI, Brooks JD, Campbell PA, Bova GS et al. Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc Natl Acad Sci USA 1994; 91: 11733–11737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shetty S, Kusminski CM, Scherer PE . Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol Sci 2009; 30: 234–239.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by grants to JHP by the Juravinski Cancer Center Foundation and the Prostate Cancer Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J H Pinthus.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, JP., Hou, Z., Duivenvoorden, W. et al. Adiponectin inhibits oxidative stress in human prostate carcinoma cells. Prostate Cancer Prostatic Dis 15, 28–35 (2012). https://doi.org/10.1038/pcan.2011.53

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.53

Keywords

This article is cited by

Search

Quick links