Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression

Abstract

Prediction of cancer progression after radical prostatectomy is one of the most challenging problems in the management of prostate cancer. Gene-expression profiling is widely used to identify genes associated with such progression. Usually candidate genes are identified according to a gene-by-gene comparison of expression. Recent reports suggested that relative expression of a gene pair more efficiently predicts cancer progression than single-gene analysis does. The top-scoring pair (TSP) algorithm classifies phenotypes according to the relative expression of a pair of genes. We applied the TSP approach to predict, which patients would experience systemic tumor progression after radical prostatectomy. Relative expression of TPD52L2/SQLE and CEACAM1/BRCA1 gene pairs identified those patients with more than 99% specificity but relatively low sensitivity (10%). These two gene pairs were validated in three independent data sets. In addition, combining two pairs of genes improved sensitivity without compromising specificity. Functional annotation of the TSP genes showed that they cluster by a limited number of biological functions and pathways, suggesting that relatively lower expression of genes from specific pathways can predict cancer progression. In conclusion, comparative analysis of the expression of two genes may be a simple and effective classifier for prediction of prostate cancer progression. In summary, the TSP approach can be used to identify patients whose prostate cancer will progress after they undergo radical prostatectomy. Two gene pairs can predict which men would experience progression to the metastatic form of the disease. However, because our analysis was based on a relatively small number of genes, a larger study will be needed to identify the best predictors of disease outcome overall.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Burdick MJ, Reddy CA, Ulchaker J, Angermeier K, Altman A, Chehade N et al. Comparison of biochemical relapse-free survival between primary Gleason score 3 and primary Gleason score 4 for biopsy Gleason score 7 prostate cancer. Int J Radiat Oncol Biol Phys 2009; 73: 1439–1445.

    Article  PubMed  Google Scholar 

  2. Freedland SJ, Eastham J, Shore N . Androgen deprivation therapy and estrogen deficiency induced adverse effects in the treatment of prostate cancer. Prostate Cancer and Prostatic Dis 2009; 12: 333–338.

    Article  CAS  Google Scholar 

  3. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822–826.

    Article  CAS  PubMed  Google Scholar 

  4. Dhanasekaran SM, Dash A, Yu J, Maine IP, Laxman B, Tomlins SA et al. Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty. FASEB J 2005; 19: 243–245.

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa T, Kollmeyer TM, Morlan BW, Anderson SK, Bergstralh EJ, Davis BJ et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS One 2008; 3: e2318.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1: 203–209.

    Article  CAS  PubMed  Google Scholar 

  7. Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer 2007; 7: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  8. LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V et al. Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 2002; 62: 4499–4506.

    CAS  PubMed  Google Scholar 

  9. Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R et al. Gene expression analysis of prostate cancers. Mol Carcinog 2002; 33: 25–35.

    Article  CAS  PubMed  Google Scholar 

  10. Tamura K, Furihata M, Tsunoda T, Ashida S, Takata R, Obara W et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res 2007; 67: 5117–5125.

    Article  CAS  PubMed  Google Scholar 

  11. Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L et al. Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol 2004; 22: 2790–2799.

    Article  CAS  PubMed  Google Scholar 

  12. Ummanni R, Teller S, Junker H, Zimmermann U, Venz S, Scharf C et al. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J 2008; 275: 5703–5713.

    Article  CAS  PubMed  Google Scholar 

  13. Ding GF, Xu YF, Yang ZS, Ding YL, Fang HF, Zhao HP . Coexpression of the mutated BRCA1 mRNA and p53 mRNA and its association in Chinese prostate cancer. Urol Oncol 2009; doi: 10.1016/j.urolonc.2009.01.002.

    Article  CAS  PubMed  Google Scholar 

  14. Schayek H, Haugk K, Sun S, True LD, Plymate SR, Werner H . Tumor suppressor BRCA1 is expressed in prostate cancer and controls insulin-like growth factor I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner. Clin Cancer Res 2009; 15: 1558–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tilki D, Irmak S, Oliveira-Ferrer L, Hauschild J, Miethe K, Atakaya H et al. CEA-related cell adhesion molecule-1 is involved in angiogenic switch in prostate cancer. Oncogene 2006; 25: 4965–4974.

    Article  CAS  PubMed  Google Scholar 

  16. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  17. Geman D, d′Avignon C, Naiman DQ, Winslow RL . Classifying gene expression profiles from pairwise mRNA comparisons. Stat Appl Genet Mol Biol 2004; 3, Article 19.

    Article  Google Scholar 

  18. Tan AC, Naiman DQ, Xu L, Winslow RL, Geman D . Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 2005; 21: 3896–3904.

    Article  CAS  PubMed  Google Scholar 

  19. Xu L, Tan AC, Naiman DQ, Geman D, Winslow RL . Robust prostate cancer marker genes emerge from direct integration of inter-study microarray data. Bioinformatics 2005; 21: 3905–3911.

    Article  CAS  PubMed  Google Scholar 

  20. Ummanni R, Teller S, Junker H, Zimmermann U, Venz S, Scharf C et al. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J 2008; 275: 5703–5713.

    Article  CAS  PubMed  Google Scholar 

  21. Cheng I, Plummer SJ, Jorgenson E, Liu X, Rybicki BA, Casey G et al. 8q24 and prostate cancer: association with advanced disease and meta-analysis. Eur J Hum Genet 2008; 16: 496–505.

    Article  CAS  PubMed  Google Scholar 

  22. Hooker S, Hernandez W, Chen H, Robbins C, Torres JB, Ahaghotu C et al. Replication of prostate cancer risk loci on 8q24, 11q13, 17q12, 19q33, and Xp11 in African Americans. Prostate 2009; doi: 10.1002/pros.21061.

  23. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39: 645–649.

    Article  CAS  PubMed  Google Scholar 

  24. Antognelli C, Mearini L, Talesa VN, Giannantoni A, Mearini E . Association of CYP17, GSTP1, and PON1 polymorphisms with the risk of prostate cancer. Prostate 2005; 63: 240–251.

    Article  CAS  PubMed  Google Scholar 

  25. Schayek H, Haugk K, Sun S, True LD, Plymate SR, Werner H . Tumor suppressor BRCA1is expressed in prostate cancer and controls insulin-like growth factor I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner. Clin Cancer Res 2009; 15: 1558–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu W, Liu LZ, Loizidou M, Ahmed M, Charles IG . The role of nitric oxide in cancer. Cell Res 2002; 12: 311–320.

    Article  PubMed  Google Scholar 

  27. Cronauer MV, Ince Y, Engers R, Rinnab L, Weidemann W, Suschek CV et al. Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression. Oncogene 2007; 26: 1875–1884.

    Article  CAS  PubMed  Google Scholar 

  28. Kroncke KD, Suschek CV, Kolb-Bachofen V . Implications of inducible nitric oxide synthase expression and enzyme activity. Antioxid Redox Signal 2000; 2: 585–605.

    Article  CAS  PubMed  Google Scholar 

  29. Moon YJ, Wang X, Morris ME . Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro 2006; 20: 187–210.

    Article  CAS  PubMed  Google Scholar 

  30. Okamura M, Yamaji S, Nagashima Y, Nishikawa M, Yoshimoto N, Kido Y et al. Prognostic value of integrin β1-ILK-pAkt signaling pathway in non–small cell lung cancer. Hum Pathol 2007; 38: 1081–1091.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the David Koch Center for Applied Research in Genitourinary Cancer; the NIH Prostate SPORE Grant 1 P50 CA140388-01; and the NIH Cancer Center Support Grant 5 P30 CA16672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I P Gorlov.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, H., Logothetis, C. & Gorlov, I. Usefulness of the top-scoring pairs of genes for prediction of prostate cancer progression. Prostate Cancer Prostatic Dis 13, 252–259 (2010). https://doi.org/10.1038/pcan.2010.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2010.9

Keywords

This article is cited by

Search

Quick links