Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression

Abstract

Recent advances in cancer biology reveal that microRNAs (miRNAs) are involved in the regulation of cancer-related genes, or they function as tumor suppressors or oncogenes. In prostate cancer, evidence has accumulated for the contribution of the androgen-dependent gene network to tumor growth, although the precise functions of miRNAs in prostate cancer remain to be investigated. Here, we identified androgen-responsive miRNAs by the short RNA sequencing analysis in LNCaP prostate cancer cells. Among 10 miRNAs with known sequences, we have determined that miR-148a reduces the expression of cullin-associated and neddylation-dissociated 1 (CAND1), a negative regulator of SKP1-Cullin1-F-box (SCF) ubiquitin ligases, by binding to the 3′-untranslated region of CAND1 mRNA. CAND1 knockdown by small interfering RNA promoted the proliferation of LNCaP cells. Our study indicates the potential contribution of miR-148a to the growth of human prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  2. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  3. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 2004; 101: 2999–3004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kent OA, Mendell JT . A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 2006; 25: 6188–6196.

    Article  CAS  PubMed  Google Scholar 

  5. Brown BD, Naldini L . Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 2009; 10: 578–585.

    Article  CAS  PubMed  Google Scholar 

  6. Dehm SM, Tindall DJ . Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007; 21: 2855–2863.

    Article  CAS  PubMed  Google Scholar 

  7. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  PubMed  Google Scholar 

  8. Takayama K, Kaneshiro K, Tsutsumi S, Horie-Inoue K, Ikeda K, Urano T et al. Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 2007; 26: 4453–4463.

    Article  CAS  PubMed  Google Scholar 

  9. Takayama K, Tsutsumi S, Suzuki T, Horie-Inoue K, Ikeda K, Kaneshiro K et al. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Cancer Res 2009; 69: 137–142.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 2009; 138: 245–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 2009; 458: 97–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007; 448: 595–599.

    Article  CAS  PubMed  Google Scholar 

  13. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67: 6130–6135.

    Article  CAS  PubMed  Google Scholar 

  15. Schaefer A, Jung M, Mollenkopf HJ, Wagner I, Stephan C, Jentzmik F et al. Diagnostic and prognostic implications of microRNA profiling in prostate carcinoma. Int J Cancer 2010; 126: 1166–1176.

    CAS  PubMed  Google Scholar 

  16. Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ et al. Tiny RNAs associated with transcription start sites in animals. Nat Genet 2009; 41: 572–578.

    Article  CAS  PubMed  Google Scholar 

  17. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ . miRBase: tools for microRNA genomics. Nucleic Acids Res 2008; 36: D154–D158.

    Article  CAS  PubMed  Google Scholar 

  18. Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M et al. An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 2007; 104: 19983–19988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, Lykke-Andersen K et al. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol Cell 2002; 10: 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Furukawa M, Matsumoto T, Xiong Y . NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol Cell 2002; 10: 1511–1518.

    Article  CAS  PubMed  Google Scholar 

  21. Ozen M, Creighton CJ, Ozdemir M, Ittmann M . Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 2008; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  22. Ribas J, Ni X, Haffner M, Wentzel EA, Salmasi AH, Chowdhury WH et al. miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth. Cancer Res 2009; 69: 7165–7169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008; 105: 13556–13561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujita Y, Kojima K, Ohhashi R, Hamada N, Nozawa Y, Kitamoto A et al. MiR-148a attenuates paclitaxel resistance of hormone-refractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J Biol Chem 2010; 285: 19076–19084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105: 10513–10518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salon C, Brambilla E, Brambilla C, Lantuejoul S, Gazzeri S, Eymin B . Altered pattern of Cul-1 protein expression and neddylation in human lung tumours: relationships with CAND1 and cyclin E protein levels. J Pathol 2007; 213: 303–310.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Chihiro Sakaba, Hiromi Sano, Ryoko Ishihara, and Kazumi Yamaguchi (Riken) for their assistance. This work was supported by Grants of the Genome Network Project, Cell Innovation Program, and the DECODE from the MEXT; by the Program for Promotion of Fundamental Studies in Health Science of the NIBIO; by Grants from the Japan Society for the Promotion of Science; by Grants-in-Aid from the Ministry of Health, Labor and Welfare, and the Promotion and Mutual Aid Corporation for Private School of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Inoue.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, T., Takayama, K., Katayama, S. et al. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Prostate Cancer Prostatic Dis 13, 356–361 (2010). https://doi.org/10.1038/pcan.2010.32

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2010.32

Keywords

This article is cited by

Search

Quick links