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Characteristics of the co-fluctuation matrix
transmission network based on financial
multi-time series
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ABSTRACT The co-fluctuation of two time series has often been studied by analysing the

correlation coefficient over a selected period. However, in both domestic and global financial

markets, there are more than two active time series that fluctuate constantly as a result of

various factors, including geographic locations, information communications and so on. In

addition to correlation relationships over longer periods, daily co-fluctuation relationships and

their transmission features are also important, since they can present the co-movement patterns

of multi-time series in detail. To capture and analyse the features of the daily co-movements of

multiple financial time series and their transmission characteristics, we propose a new term—“the

co-fluctuation relation matrix”—which can reveal the co-fluctuation relationships of multi-time

series directly. Here, based on complex network theory, we construct a multi-time series

co-fluctuation relation matrix transmission network for financial markets by taking each matrix as

a node and the succeeding time sequence as an edge. To reveal the process more clearly, we

utilize daily time series data for four well-known stock indices—the NASDAQ Composite

(COMP), the S&P 500 Index, the Dow Jones Industrial Average and the Russell 1000 Index—

from 22 January 2003 to 21 January 2015, to examine the concentration of the transmission

networks and the roles of each matrix—in addition to the transmission relationships between the

matrices—based on a variety of coefficients. We then compare our results with the statistical

features of the stock indices and find that there are not many discernible patterns of

co-fluctuation matrices over the 12-year period, and few of these play important roles in the

transmission network. However, the conductibility of the few dominant nodes is different and

reveals certain novel features that cannot be obtained by traditional statistical analysis, such as

the “all positive co-fluctuation matrix”, which is the most important node, although one stock

index has negative correlation with the other three. This research therefore provides a novel

method for analysing the co-movement behaviour of multiple financial time series, which can

help researchers obtain the roles and relations of co-fluctuation patterns both over short and long

terms. The findings also provide an important basis for further investigations into financial market

simulations and the fluctuation of multiple financial time series.
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Introduction

The financial markets constitute an important component of
both domestic economies and the global economy. It is
important to study the fluctuations of financial time series

to understand financial market performance and economic
stability. Typically, scholars examine the fluctuation and stability
of financial time series by analysing the statistical features of
single time series—such as the means or standard deviations of
stock returns, futures and options prices and stock indices
(Kumar et al., 2012)—and the correlations between two different
time series over a selected period of time (Sadorsky, 2012), for
example, 1 year, one decade and so on. However, there are
hundreds of different time series that exhibit different fluctua-
tions simultaneously; thus, to study the inner relationships of
multiple financial time series, it is also important to study how
these multiple time series interact with one another over both the
short and the long term, in addition to examining the role that
each interactive pattern plays and what relationships can be
discerned among the interactive patterns.

Stock indices are important tools for measuring the fluctuation
and performance of both stock markets and financial markets.
Calculated from selected stock prices, stock indices are also
important to the financial futures markets, which are used to
hedge risk in stock markets (Yang et al., 2012; Chen et al., 2013).
Stock indices constantly fluctuate based on a variety of factors,
including investor sentiment and customer satisfaction (Peng
et al., 2015), the exchange market (Cao et al., 2012), crude oil
prices and world oil spot markets (Filis et al., 2011; Soytas and
Oran, 2011; Chang et al., 2013), and internet usage data (Preis
et al., 2012). Typically, scholars use volatility and correlation
coefficients to measure the variations in a single stock index
(Schwert, 2011) and the strength of the linear relationship
between two or multiple cross-stock indices (Wang et al., 2011)
during a given period, respectively. Some scholars use artificial
neural networks (Kara et al., 2011; Ticknor, 2013), wavelet
analysis (Akoum et al., 2012; Reboredo and Rivera-Castro, 2014)
and certain hybrid models (Wei et al., 2011; Liu and Wang, 2012;
Wang et al., 2012; Kao et al., 2013) to forecast the fluctuation of
stock indices and the interactions between stock indices and other
time series. However, few scholars use autoregressive sub-patterns
to study the transmission of a single stock index (Gao et al.,
2014).

There are many different stock indices associated with the
global financial markets that are characterized by more or less
interactive relationships due to myriad factors, such as the
common listed companies they consider, the stock markets they
analyse, the similarity of the economic environments in which
they operate and so on. To study the interactive relationships of
stock indices more deeply, it is important to capture the co-
fluctuation relations of multi-stock index time series and to
determine what the roles of each co-fluctuation relationship are
over both the long and short terms. Indeed, the co-fluctuation
relations of multiple stock indices (assuming that the quantity of
stock indices is n) over the short term (such as one day) can be
represented by an n× n symmetric matrix that captures the
fluctuation relationship between any of the two indices. These
n× n symmetric matrices that are based on the n time series can
form a new time series for the matrices, and we can map these
time series into complex networks employing different methods
(Zhang and Small, 2006; Lacasa et al., 2008; Xu et al., 2008; Yang
and Yang, 2008; Donner et al., 2010). With the help of a complex
network, we can then analyse the roles of each co-fluctuation
pattern over the short term and its relationships with other
patterns in the network over the long term.

Complex networks have been used effectively to simulate and
facilitate the analysis of economic problems (FAGIOLO, 2009),

particularly in the stock market. Typically, scholars take single
homogeneous elements—including listed companies, stock prices
and shareholders—as nodes and use their cross-shareholding
relationships (Li et al., 2014), fluctuation correlations (Chi et al.,
2010) and so on, as edges to construct complex networks to
analyse their topological features and dynamic evolution. More-
over, certain “new frontiers”, such as networks of networks (Gao
et al., 2011) and heterogeneous networks (Li et al., 2014) (two-
mode and multi-mode networks) are used to simulate empirical
economic agents and their relationships more precisely.
In previous studies, in particular, we have examined the stock
market from a two-mode perspective (Li et al., 2014) and have
analysed a network of co-holding networks (Li et al., 2014), in
addition to studying the transmission of a single stock index time
series (Gao et al., 2014).

In this paper, with the aim of analysing the transmission issues
surrounding the co-fluctuations of multiple time series and the
roles of each co-fluctuation pattern, we use four well-known stock
indices as empirical data and combine the ideas from the fields of
network of networks and heterogeneous networks to construct a
multi-stock index co-fluctuation relations matrix using the
coarse-grained method (Hyeon and Thirumalai, 2011) and a
time series transmission network with co-fluctuation relations
matrices as nodes. We then examine the statistical features of
each stock index as well as any of the two indices and analyse the
concentration features of the entire transmission network by two
defined coefficients. Finally, we analyse the roles of the co-
fluctuation relation matrices and the relationships among them
from various perspectives, including degree, weighting and
certain conductibility coefficients, such as Eigenvector Centrality,
Closeness Centrality, Betweenness Centrality and the Self-
Conductibility Coefficient. This paper proposes a novel method
for studying the co-fluctuation behaviour of multiple time series
in the financial markets over both the long and short term;
moreover, this method is also important for deeper under-
standing regarding the simulation and predictability of the
financial markets.

Data and methodology
Data. To exploit the trading sessions, we use the daily time series
data of four well-known stock indices, the NASDAQ Composite
(COMP), the S&P 500 Index, the Dow Jones Industrial Average
and the Russell 1000 Index. The NASDAQ Composite is an
American stock index that is calculated based on all the American
and foreign common stocks as well as similar securities listed
on the NASDAQ stock market; typically, it is heavily weighted
towards listed companies in the IT field. The S&P 500 Index is an
American stock market index that is calculated based on the Top
500 common stocks listed on the New York stock exchange and
NASDAQ stock market based on market capitalization. The Dow
Jones Industrial Average is an American stock index that is cal-
culated based on 30 American large publicly owned companies.
These three stock indices are the three most-followed American
stock market indices. Meanwhile, there is another well-known
stock index, the Russell 1000 Index, that reflects the performance
of small companies. The Russell 1000 Index is calculated based on
the Top 1,000 stocks in the Russell 3000 Index, which consists of
the Top 3,000 publicly held American companies as measured
by total market capitalization. As shown above, both the con-
stituencies and the weighting methodologies of the four stock
indices are diverse. Here, we use the terms NASDAQ, S&P 500,
Dow Jones and Russell 1,000 to represent the four stock indices.
We include 3,022 trading days from 21 January 2003 to 21
January 2015 in our sample; thus, we arrive at 3,021 values for the
index daily fluctuation rate (fluctuation rate for short) since 22
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January 2003, based on the following:

Fi tð Þ ¼ Ii tð Þ � Ii t � 1ð Þ
Ii t � 1ð Þ ð1Þ

where Fi(t) is the fluctuation rate of stock index i from trading
day t-1 to trading day t, Ii(t) is the index value of stock index i at
trading day t and Ii(t− 1) is the index value of stock index i at
trading day t-1. In this paper, stock indices’ fluctuation rates were
acquired from the Global Stock Markets on the Quandl Data
Platform (https://www.quandl.com). The datasets analysed dur-
ing the current study are available in the Dataverse repository
(Li, 2015).

Definition of co-fluctuation patterns. We use the coarse-grained
method (Hyeon and Thirumalai, 2011) to simulate the
co-fluctuation of any two stock indices. For each stock index,
there are three possible fluctuation choices from trading day t− 1
to t: increase (Fi(t)40), decrease (Fi(t)o0), and remain
unchanged (Fi(t)= 0). For any two stock indices, we define six co-
fluctuation patterns to represent their changing directions as
follows:

xij tð Þ ¼

P when Fi tð Þ � Fj tð Þ40; and F Fi tð Þ; Fj tð Þ40
Q when Fi tð Þ � Fj tð Þ40; and Fi tð Þ; Fj tð Þo0
N when Fi tð Þ � Fj tð Þo0
O when Fi tð Þ � Fj tð Þ ¼ 0 and Fi tð Þ þ Fj tð Þ ¼ 0
p when Fi tð Þ � Fj tð Þ ¼ 0 and Fi tð Þ þ Fj tð Þ40
q when Fi tð Þ � Fj tð Þ ¼ 0 and Fi tð Þ þ Fj tð Þo0

8>>>>>><
>>>>>>:

ð2Þ

Definition of multi-stock index co-fluctuation relation matrix.
After we define the co-fluctuation patterns of any two stock
indices, we can then obtain the short-term multi-stock index co-
fluctuation pattern of each, which is calculated by combining the
co-fluctuation patterns of any two of the stock indices and can be
presented by the n× n relation matrix (M(t)) as follows:

M tð Þ ¼
" x11 tð Þ ? x1n tð Þ
^ & ^
xn1 tð Þ ? xnn tð Þ

#
ð3Þ

where n is the quantity of stock indices. Here n= 4, so M(t) is
shown in Table 1.

Because it is a symmetric matrix (xij= xji), the values of the
green parts can be obtained when the values of the yellow parts
are obtained, we must know only 10 values of the green parts and
yellow parts to represent the entire matrix. In this instance, we
use a string—N(t)= {x11(t), x12(t), x13(t), x14(t), x22(t), x23(t),
x24(t), x33(t), x34(t), x44(t)}—to represent the matrix (see Fig. 1).
As discussed above, N(t) and M(t) actually represent the same
matrix.

On the basis of the definition of the co-fluctuation patterns,
the values of the green variables, that is, x11(t), x22(t), x33(t)
and x44(t), have only three possible choices depending on
whether they are positive (P), negative (Q) or zero (O). Each of
the other yellow variables has six different options, P, Q, N, O,
p, q. Thus, in theory, if all the variables are independent,
the diversity of the 4 × 4 symmetric co-fluctuation relation
matrices is: 3 × 6 × 6 × 6 × 3 × 6 × 6 × 3 × 6 × 3= 3,779,136.
However, all the values of the yellow variables depend on
the values of the green variables, so the feasible diversity (ND)
of the 4 × 4 symmetric co-fluctuation relation matrices is
34= 81.

Mapping the co-fluctuation relation matrix time series into the
transmission network. On the basis of the four groups of time
series data regarding stock indices’ fluctuation rates, we obtain the
co-fluctuation relation matrix (CFM) for each trading day (M(t)).
To map the transmission network, we take the CFMs as nodes and
the succeeding sequence relations between the CFMs as edges. We
can then obtain the weighted directed transmission network of the
multiple stock index co-fluctuation relation matrices. The trans-
mission time range in this paper is 12 years—from 22 January 2003
to 21 January 2015. For example, from trading day 1 to trading
day 5, the strings of the CFMs are “QQQQQQQQQQ”,
“PNPPQNNPPP”, “QNQQPNNQQQ”, “QQQQQQQQQQ”,
“PNPPQNNPPP”, respectively. Moreover, using the method dis-
cussed above, we know that these strings connect with one another
by successive relations: “QQQQQQQQQQ⇒PNPPQNNPPP⇒
QNQQPNNQQQ⇒QQQQQQQQQQ⇒PNPPQNNPPP”,
“QQQQQQQQQQ⇒PNPPQNNPPP” repeated twice during the
first 5 trading days, so the weight of the edge between the two
strings is 2, and we can obtain the transmission network of the 5
trading days as shown in Fig. 2. Meanwhile, we can use the same
method to map the CFMs of the next 3,016 trading days into the
transmission network iteratively. Thus, the heavier the weight of the
edge, the higher the possibility that there will be transmission
relations between two co-fluctuation matrices.

Statistical features. To measure the fluctuation of a single stock
index, we first calculate the average value (mean) μi of Fi(t),

Figure 1 | The 10-digit string representing the 4×4 symmetric co-fluctuation relation matrix.

Note: The green parts are the values from the diagonal line of the co-fluctuation relation matrix which represent the co-fluctuation relations between
the stock indices and themselves, and yellow parts are the co-fluctuation relations between any two different stock indices.

Table 1 | The 4×4 co-fluctuation relation matrix

NASDAQ S&P 500 Dow Jones Russell 1,000

NASDAQ x11(t) x12(t) x13(t) x14(t)
S&P 500 x21(t) x22(t) x23(t) x24(t)
Dow Jones x31(t) x32(t) x33(t) x34(t)
Russell 1,000 x41(t) x42(t) x43(t) x44(t)
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followed by the standard deviation σi according to Formula (4)
(Here, N= 3,021).

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

Fi tð Þ � mið Þ2
vuut ð4Þ

After analysing the fluctuations of each of the four stock
indices, we next examine the co-fluctuation of any of the two
stock indices using the Pearson correlation coefficient (Pearson,
1895; Preis et al., 2012):

rij ¼
Cov Fi tð Þ; Fj tð Þ

� �
si�sj

ð5Þ
Where ρij is the correlation coefficient of the daily fluctuation

rate of stock index i and stock index j, and Cov(Fi(t), Fj(t)) is the
covariance of the daily fluctuation rate of stock index i and stock
index j.

Concentration of the transmission network. To analyse the
existing forms of CFMs and their transmission relations,
we define the concentration coefficient of the transmission net-
work using two different aspects, that is, the concentration of
nodes (see Formula (6)) and the concentration of edges
(see Formula (7)).

CN ¼ 1� NM

ND
ð6Þ

where CN is the nodes concentration coefficient of the CFMs’
transmission network, NM is the quantity of CFMs (nodes)
appearing in the network, and ND is the quantity of potential
feasible diversity of the CFMs. Here, ND is 81.

CE ¼ 1� EA

ED
ð7Þ

where CE is the edges’ concentration coefficient of the CFMs’
matrix transmission network, EA is the quantity of apparent
different adjacent relationships between any of the two CFMs
(edges) in the network and ED is the quantity of potential feasible
diversity of the adjacent relationships among the visible CFMs.

The roles and relationships of the nodes (CFMs) in the
transmission network. There are two basic features that can
show the role of the nodes and the relationship between any of
the two nodes: degree and weight. The transmission network in
our paper is directed and weighted. Therefore, “in-degree”

indicates the different nodes that are directed to the given node,
and “out-degree” denotes the different nodes to which the given
node is directed. “Weighted in-degree” and “Weighted out-
degree” consider not only the nodes directed to the given node or
to which the given node is directed but also the weights of the
directed edges between the nodes.

To further examine the roles of the CFMs, we also examine the
conductibility of the nodes. In complex network theory, there are
many different topological characteristics and methods for
analysing the conductibility of the nodes. In this paper, we
mainly rely on three widely used algorithms, Eigenvector
Centrality, Closeness Centrality and Betweenness Centrality.
On the basis of the self-transmission character of our network,
we also define a Self-Conductibility Coefficient to analyse the self-
transmission ability of the CFMs.

Eigenvector Centrality refers to the importance and influence
of a node in the network, with the idea that higher score nodes
contribute more and lower score nodes contribute less to the
linked node. The node score is calculated using the adjacency
matrix (Newman, 2008):

xm ¼ 1
l

X
sAXðmÞ

xs ¼ 1
l

X
sAM

am;sxs ð8Þ

where xm is the centrality score of node m, X(m) is the set of
neighbor-nodes of m, λ is a constant, M is the transmission
network and am,s belongs to the adjacency matrix A, which equals
1 when there is link between node m and s and otherwise is 0.

Closeness Centrality refers to the speed of the nodes relative to
the other nodes. A lower Closeness Centrality is associated with a
smaller total distance from all other nodes and is calculated by the
sum of all the shortest paths to any other nodes in the network,
according to (Dangalchev, 2006):

CC mð Þ ¼
X

sAM\m

2�dM m;sð Þ ð9Þ

where Cc(m) is the s∈M\m of the nodes in network M that
node m can reach directly by another bridge node (s). Further,
dM(m, s) is the shortest path between node m and node s, and NM

is the quantity of nodes in the transmission network.
Betweenness Centrality indicates the control of a CFM

regarding transmissions between other CFMs in the network
and is calculated based on the number of times a node acts as a
bridge node on the shortest paths between any two other nodes
(Brandes, 2011):

CB mð Þ ¼
P

savat
sst mð Þ
sst

NM � 1ð ÞðNM � 2Þ ð10Þ
where CB(m) is the normalized Betweenness Centrality coefficient
of CFM (node) m, σst is the quantity of short paths between s and
t, σst(m) is the quantity of those short paths that pass through m,
and NM is the quantity of nodes in the transmission network.

As required in the construction of the network, there will be
some self-transmission nodes. Some of these may have strong
self-transmission phenomena, but all the centrality coefficient
methods discussed above only consider the conductibility of the
node to other nodes in the transmission network; however, in this
paper, we defined a the following Self-Conductibility Coefficient
to analyse the self-transmission phenomenon of the nodes:

Cs mð Þ ¼ 1�WOD0 ðmÞ
WIDðmÞ ¼ 1�

P
vamwm;vP
wv;m

¼ wm;mP
wv;m

ð11Þ

where Cs(m) is the normalized Self-Conductibility Coefficient;
WOD′(m) is the sum of the weights of the edges between node m
and all the other nodes to which node m is directed in the

Figure 2 | The CFMs’ transmission network for the 5 trading days.

Note: The strings which represent the co-fluctuation relation matrices
(CFMs) of trading day 1 to trading day 5 are “QQQQQQQQQQ”,
“PNPPQNNPPP”, “QNQQPNNQQQ”, “QQQQQQQQQQ”,
“PNPPQNNPPP”, respectively. Then, we can get the co-fluctuation
relation matrices transmission network of the first 5 days by successive
relations.
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transmission network, except m; WID(m) is the sum of all the
weights of the edges between all the nodes that are directed to m
and m (including m directed to m); Wm,v represents the weights
of the edge between node m and node v; m is the start of the
directed edge; v is the end of the directed edge; and wm,m refers to
the weights of the self-transmission edge of m.

Results
Statistical features of the fluctuation rates of the four stock
indices. To study the fluctuation of the stock indices in both
the traditional statistics perspective and transmission network
perspective, we first used some common analytical methods
from statistics to investigate the fluctuation of a single variable
and the correlation coefficient of two variables, according to
Formulas (4) and (5). All the average values of the standard
deviation are all of the same order of magnitude (×10− 4), and the
standard deviation of the fluctuation rate of the NASDAQ is
much larger than that of the other three stock indices, which
indicates that the NASDAQ has a stronger fluctuation than the
other three stock indices (Table 2). The NASDAQ and the Dow
Jones, the NASDAQ and the Russell 1000 and the Dow Jones and
the Russell 1000 exhibit more similar and consistent char-
acteristics with one another (Fig. 3). The scatter plots of the
NASDAQ and the S&P 500, the S&P 500 and the Dow Jones,
and the S&P 500 and the Russell 1000 are more similar to one
another. Each of these index groupings contains the S&P 500
stock index, so we can assume that the S&P 500 is the common
factor involved in the distribution characteristics of the scatter
plots. Table 3 provides further proof for consumption by
showing that the Pearson correlation coefficient between the
S&P 500 and any other stock index is significantly negative due
to its diverse constituency and weighting methodology (as well
as based on some other reasons, such as the business scope of
the listed companies and so on). However, the Pearson corre-
lation coefficients between any of the two stock index groupings
involving the NASDAQ, the Dow Jones and the Russell 100 are
significantly positive and relatively high (from 0.899 to 0.976),
although they also have diverse constituencies and weighting
methodologies. These findings form the basis of the following
analysis regarding the concentration and conductibility of the
CFMs of multiple stock indices.

The concentration features of a multi-stock index co-
fluctuation relation matrix transmission network. As dis-
cussed above, any of the two-stock-index fluctuation rates have
significant correlation coefficients, but we still cannot identify in
much detail how the multi-fluctuation rate time series relate to
one another both over the short term and from a holistic per-
spective. After mapping the CFMs’ time series into a transmission
network based on the method discussed above, we identify 19
different nodes and 158 different edges (see Fig 4) and can
therefore obtain the nodes’ concentration coefficient of the CFMs’
transmission network, which is 0.7654. Because the CFMs’
transmission network is directed and because the matrices can
self-link, the potential feasible diversity of the adjacent relation-
ships among the CFMs is 19 × 19= 361. Following this

determination, we can obtain the edges’ concentration coefficient
of the CFMs’ transmission network, which is 0.5623. On the basis
of the definitions and the values of both the nodes’ concentration
coefficient and the edges’ concentration coefficient, we can con-
clude that the multiple co-fluctuation relations for the four stock
indices studied in this paper are highly concentrated in a few
forms and that the transmission relationships of these forms are
concentrated as well.

The roles and relations of the multi-stock index co-fluctuation
relation matrix in the transmission network. An analysis of the
concentration coefficient reveals that the CFMs’ transmission
network is relatively concentrated compared with the potential
diversity of the network. Next, we must discover the roles of each
CFM (node) in the transmission network. Table 4 shows that
there are four CFMs with a high frequency in the transmission
network, “PPPPPPPPPP”, “PNPPQNNPPP”, “QNQQPNNQQQ”
and “QQQQQQQQQQ”. “PPPPPPPPPP” represents the entire
positive CFM that we call the “all positive co-fluctuation matrix”,
in which all four stock indices exhibit positive fluctuation
(see Table 5). “PNPPQNNPPP” indicates that the S&P 500 has
negative fluctuation while the other stock indices have positive
fluctuations, which we call the “all positive but the S&P 500 co-
fluctuation matrix” (see Table 6). “QNQQPNNQQQ” is the
opposite of “PNPPQNNPPP”, that is, the S&P 500 has a positive
fluctuation and the other indices have negative fluctuation, which
we call the “all negative but the S&P 500 co-fluctuation matrix”
(see Table 7). “QQQQQQQQQQ” represents the entire negative
CFM that we call the “all negative co-fluctuation matrix”, in
which all four stock indices exhibit negative fluctuation
(see Table 8). Meanwhile, Fig 5(a) shows that these four CFMs
account for more than 80% of all the weighted out-degrees of the
network, which indicates that the four stock indices either co-
move in the same direction or that the S&P 500 moves in one
direction while the remaining three indices (co-)move together in
a different direction. We can use the strong positive correlation
coefficients between the NASDAQ, the Dow Jones and the Russell
1000 to explain their consistent co-fluctuation relations, a result
that challenges the negative correlation coefficients between the
S&P 500 and the other three stock indices. Although the S&P 500
is negatively correlated with the fluctuation rates of the NAS-
DAQ, the Dow Jones and the Russell 1000, the “all positive but
the S&P 500 co-fluctuation matrix” (PNPPQNNPPP) or the “all
negative but the S&P 500 co-fluctuation matrix” (QNQQPN
NQQQ) is not necessarily the top CFM (node) in the transmis-
sion network. It is clear that the “all positive co-fluctuation
matrix” (PPPPPPPPPP) is the most constant co-fluctuation
relation. Nonetheless, the sum of “PNPPQNNPPP” and “QNQQ
PNNQQQ” is slightly higher than the sum of “PPPPPPPPPP”
and “QQQQQQQQQQ”, which supports the weak negative
correlation between the S&P 500 and the other three stock
indices.

According to Fig. 5(b), although there are 158 different edges
between the nodes, eight edges account for more than 60% of the
total weights in the transmission network (see Table 4), which
indicates that there are more transmission possibilities in the next

Table 2 | Statistics for each of the four stock indices

NASDAQ S&P 500 Dow Jones Russell 1,000

Minimum −0.091424148 −0.087118836 −0.078732766 −0.091143610
Maximum 0.118059302 0.106712058 0.110803331 0.116714312
Mean (μi) 5.01394172× 10−04 3.36050807× 10−04 3.07290521 × 10−04 3.67650414× 10−04

STD (σi) 0.013794282 7.76325000× 10 −04 5.50962000× 10−04 8.11353000× 10−04
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Table 3 | Correlation coefficients among the stock indices

NASDAQ S&P 500 Dow Jones Russell 1000

NASDAQ Pearson Correlation 1 −0.042* 0.899† 0.935†
Sig. (2-tailed) 0.022 0.000 0.000
N 3021 3021 3021 3021

S&P 500 Pearson Correlation −0.042* 1 −0.060† −0.050†
Sig. (2-tailed) 0.022 0.001 0.006
N 3021 3021 3021 3021

Dow Jones Pearson Correlation 0.899† −0.060† 1 0.976†
Sig. (2-tailed) 0.000 0.001 0.000
N 3021 3021 3021 3021

Russell 1,000 Pearson Correlation 0.935† −0.050† 0.976† 1
Sig. (2-tailed) 0.000 0.006 0.000
N 3021 3021 3021 3021

*Correlation is significant at the 0.05 level (2-tailed).
† Correlation is significant at the 0.01 level (2-tailed).

Figure 3 | 2D scatter plots of the fluctuation rates of stock indices.

Note: The scatter plots show the distribution of fluctuation rates of any two of the stock indices, which can help us to get the distribution features
directly.
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period by these edges if we know the present CFM. Analysing these
edges can be helpful in studying the relationships of different
fluctuation scenarios and for more advanced simulations of stock
indices fluctuation behaviour. According to Table 9, the top eight
edges are all between the top four nodes discussed above, and when
the co-fluctuation pattern of the four indices is the “all positive but
the S&P 500 co-fluctuation matrix” (PNPPQNNPPP), they will
have a greater likelihood of being in the opposite situation in the
next period, i.e., the “all negative but the S&P 500 co-fluctuation
matrix” (QNQQPNNQQQ) or the “all negative co-fluctuation
matrix” (QQQQQQQQQQ). If the co-fluctuation pattern is the
“all positive co-fluctuation matrix” (PPPPPPPPPP) at present, it
will more likely transition to “all positive but the S&P 500 co-
fluctuation matrix” (PNPPQNNPPP) or maintain the same

Figure 4 | The multi-stock index co-fluctuation relation matrix

transmission network.
Note: This is the co-fluctuation relation matrix transmission network of
the four stock indices from trading day 1 to trading day 3021. The size of
the node depends on the occurrence number of the co-fluctuation
relation matrix.

Table 4 | Topological features of the multi-stock index co-fluctuation relation matrices (nodes)

Nodes In-degree Out-degree Weighted In-degree Weighted Out-degree

PPPPPPPPPP 17 13 702 702
PNPPQNNPPP 16 12 625 624
QNQQPNNQQQ 15 12 571 571
QQQQQQQQQQ 17 12 490 491
PPNNPNNQQQ 9 10 99 99
PPNPPNPQNP 12 11 98 98
QNNNPPPPPP 10 11 93 93
QQNNQNNPPP 9 9 73 73
PNNNQQQQQQ 10 9 50 50
QNNQPPNPNQ 7 11 50 50
PNNPQQNQNP 10 10 47 47
QQNQQNQPNQ 8 7 46 46
QNQNPNPQNP 5 8 26 26
PPPNPPNPNQ 2 8 22 22
QQQNQQNQNP 3 8 13 13
PNPNQNQPNQ 5 4 12 12
QqQQOqqQQQ 1 1 1 1
PNPpQNqPpO 1 1 1 1
PPpPPpPOpP 1 1 1 1

Table 5 | Co-fluctuation relation matrix of “PPPPPPPPPP”
(all positive)

NASDAQ S&P 500 Dow Jones Russell 1000

NASDAQ P P P P
S&P 500 P P P P
Dow Jones P P P P
Russell 1000 P P P P

Table 6 | Co-fluctuation relation matrix of “PNPPQNNPPP”
(all positive but S&P 500)

NASDAQ S&P 500 Dow Jones Russell 1000

NASDAQ P N P P
S&P 500 N Q N N
Dow Jones P N P P
Russell 1000 P N P P

Table 7 | Co-fluctuation relation matrix of
“QNQQPNNQQQ” (all negative but S&P 500)

NASDAQ S&P 500 Dow Jones Russell 1,000

NASDAQ Q N Q Q
S&P 500 N P N N
Dow Jones Q N Q Q
Russell 1000 Q N Q Q

Table 8 | Co-fluctuation relation matrix of
“QQQQQQQQQQ” (all negative)

NASDAQ S&P 500 Dow Jones Russell 1,000

NASDAQ Q Q Q Q
S&P 500 Q Q Q Q
Dow Jones Q Q Q Q
Russell 1000 Q Q Q Q
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pattern, that is, “PPPPPPPPPP”. When the S&P 500 fluctuates
positively while the other three indices fluctuate negatively
(QNQQPNNQQQ), it will also have a greater likelihood of
transitioning into the opposite situation in the next period
(“PNPPQNNPPP”) or “PPPPPPPPPP”. If its present scenario is
the “all negative co-fluctuation matrix” (QQQQQQQQQQ), it will
likely become “QNQQPNNQQQ” or “QQQQQQQQQQ” on the
next trading day. Thus, we can conclude that if the CFM is
“PNPPQNNPPP” or “QNQQPNNQQQ” in the CFMs” transmis-
sion network, it will likely change to the opposite scenario or make
all the indices fluctuate in the same direction as the S&P 500, and if
the CFM is either the “all positive co-fluctuation matrix” or the “all
negative co-fluctuation matrix”, it will be likely that only the S&P
500 changes to the opposite direction in the next period or that all
four stock indices remain the same.

The conductibility of the multi-stock index co-fluctuation
relation matrix in the transmission network. On the basis of the
algorithms of Eigenvector Centrality (Formula (8)), Closeness
Centrality (Formula (9)), and Betweenness Centrality (Formula
(10)), we calculate the values of each node and obtain the hier-
archical cluster of these values (see Fig. 6). We can see that the
nodes can be divided into three different sets based on their
centrality coefficients. Set A contains the high-centrality coeffi-
cients” nodes, that is, “QQQQQQQQQQ”, “QNQQPNNQQQ”,
“PPPPPPPPPP” and “PNPPQNNPPP”. Set C is the low-centrality
coefficients nodes, that is, “PPpPPpPOpP”, “PNPpQNqPpO” and
“QqQQOqqQQQ”. Meanwhile, Set B corresponds to the
medium-centrality coefficients” nodes with the left twelve nodes
of the transmission network. The four nodes in Set A are also the
four nodes with high degrees as analysed above, based on the
values of the centrality coefficients (see Table 10), this indicates
that different nodes have different roles and conductibility. For
example, “PPPPPPPPPP” has the largest Eigenvector Centrality,
which indicates that the “all positive co-fluctuation matrix” links
to all the higher Eigenvector Centrality matrices in the network.

Figure 5 | Cumulative distribution and complementary cumulative

distribution graph of the weighted out-degree and weights.
Note: Here there are eighteen nodes and one hundred and fifty eight
egdes, and the nodes and edges are sequenced by “weighted out-
degree” and “weights” from highest to lowest in the x-axis of a and b.

Table 9 | Top eight edges and their weights in the transmission network

Source Target Weights

Value Proportion Cumulative proportion

QNQQPNNQQQ PNPPQNNPPP 282 0.093377483 0.093377483
PNPPQNNPPP PPPPPPPPPP 266 0.08807947 0.181456953
PPPPPPPPPP PPPPPPPPPP 254 0.08410596 0.265562913
PNPPQNNPPP QNQQPNNQQQ 232 0.076821192 0.342384105
PPPPPPPPPP QNQQPNNQQQ 230 0.07615894 0.418543045
QQQQQQQQQQ PNPPQNNPPP 220 0.072847682 0.491390727
QNQQPNNQQQ QQQQQQQQQQ 188 0.062251656 0.553642383

Figure 6 | Hierarchical cluster analysis based on the nodes’ Eigenvector
Centrality, Closeness Centrality and Betweenness Centrality.
Note: Here, we get the values of Eigenvector Centrality (Formula (8)),
Closeness Centrality (Formula (9)), and Betweenness Centrality
(Formula (10)) of each node, and then we input all the values of each
node into SPSS and use “hierarchical clustering” to get the result of Fig. 6,
which is calculated by the distance of the three values of each node.

Table 10 | Centrality coefficients of the nodes in Set A

Nodes Eigenvector
centrality

Closeness
centrality

Betweenness
centrality

PPPPPPPPPP 1.0000 1.3333 0.1248
PNPPQNNPPP 0.9781 1.3889 0.1150
QNQQPNNQQQ 0.9418 1.3889 0.1590
QQQQQQQQQQ 0.9994 1.3889 0.1641
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“QQQQQQQQQQ” has the largest Betweenness Centrality,
which signifies that the “all negative co-fluctuation matrix” has
the best conductibility for transmitting to the other CFMs as the
bridge node. Three nodes (CFMs) have substantial Closeness
Centrality, which indicates that they can transmit to the other
CFMs with very low short paths. In addition, each node in Set C
appears only once in the transmission network (see Table 4),
which indicates that there is little chance that the stock indices
will remain unchanged between the successive periods.

Figure 4 shows that certain nodes have the self-transmission
phenomenon, that is, “PPPPPPPPPP”, “QQQQQQQQQQ”,
“QNNNPPPPPP”, “PPNPPNPQNP”, “PNPPQNNPPP”, “QNQQ
PNNQQQ”, “PNNNQQQQQQ” and “PNNPQQNQNP”.
According to Formula (11), their Self-Conductibility Coefficients
are 0.3618, 0.3449, 0.0860, 0.0510, 0.0064, 0.0035, 0.0200 and
0.0212, respectively. These results indicate that when all four
stock indices demonstrate positive fluctuation or negative fluctu-
ation simultaneously, there is approximately a 35% chance that
the same co-fluctuation will remain in the next period. If the co-
fluctuation relation at present is one of the two high-frequency
situations, that is, “PNPPQNNPPP” or “QNQQPNNQQQ”, there
is much less of a chance for self-transmission. Except for the eight
CFMs discussed above, there is no self-transmission phenomenon
for the other eleven CFMs.

Discussion and conclusions
The main thrust of this paper is to propose a new method of
analysing the co-fluctuation patterns of multiple financial time
series over the short term and their roles and transmission
relations over the long term. To determine how the co-fluctuation
relations of multi-stock index time series are transmitted as time
passes and what the roles of each co-fluctuation relation are over
the long term, we construct a new matrix time series based on the
fluctuation rates of the initial multi-stock index time series and
the defined coarse-grained co-fluctuation patterns between any
two of the stock indices examined. To avoid differences in trading
days in the stock indices of different countries, we use four
well-known stock indices as empirical data to construct the
transmission network of the CFM time series (that is, CFMs’
transmission network).

After defining and analysing the concentration of the
transmission network, we find that the co-fluctuation relation
matrix transmission network shows a high concentration on the
co-fluctuation relation matrix forms and their transmission
relationships compared with the potential diversity of nodes
and edges. The concentration coefficients of the nodes and edges
are 0.7654 and 0.5623, respectively; thus, although the analysis
covers 12 years and more than 3,000 trading days, only
approximately 23% and 44% of the potential nodes and edges
appear in the transmission network. This finding might help
stock market investors and analysts focus on a smaller scope of
fluctuation possibilities when making investment decisions.

Futhermore, although the statistical analysis indicate that one
stock index had weak negative correlations with the remaining
three, we find that analysing the degrees of the nodes and
comparing the results to the correlation coefficient between stock
indices demonstrate that the co-fluctuation patterns with the
highest frequency are found in the “all positive co-fluctuation
matrix”, that is, when all the stock indices have a positive
fluctuation rate simultaneously. By analysing the weights between
the nodes, we find strong transmission relations between the
CFMs, which will help further investigation into simulating and
predicting the stock indices for the next trading day after being
given the current CFM. A review of the cumulative distribution
graph of weighted out-degree and weights leads us to identify four

dominant CFMs: the “all positive co-fluctuation matrix”, the “all
positive but the S&P 500 co-fluctuation matrix”, the “all negative
but the S&P 500 co-fluctuation matrix”, the “all negative co-
fluctuation matrix” and the eight dominant transmission forms
between the four CFMs. These results confirm and support our
statistical findings and also reveal new findings regarding the
transmission relations between different co-fluctuation patterns.

In addition, although all four dominant nodes discussed
immediately above have high Eigenvector Centrality, Closeness
Centrality, and Betweenness Centrality, our analysis of the
conductibility of the nodes shows that they still differ in terms
of their conductibility. For example, the “all positive co-
fluctuation matrix” has more links to the high-score node, the
“all negative co-fluctuation matrix” is the best bridge node in the
transmission network, and most of the four nodes can transmit to
the other nodes with the shortest path, among other differences.
Moreover, by defining and analysing the Self-Conductibility
Coefficient based on the self-transmission character of our
network, we find that the “all positive co-fluctuation matrix”
and the “all negative co-fluctuation matrix” have relatively high
self-conductibility, which indicates that there is a strong chance
for the stock indices to have the same co-fluctuation relations the
next trading day if their co-fluctuation relations matrix is
presently either the “all positive co-fluctuation matrix” or the
“all negative co-fluctuation matrix”.

Here, we have provided a novel perspective and a tool for
analysing the co-fluctuation of multiple financial time series.
Thus, by constructing and analysing a multiple time series co-
fluctuation relation transmission network, this research reveals
not only the co-fluctuation patterns on the short term but also the
inner transmission relationships and roles of the co-fluctuation
patterns over the long term. However, there are issues and
challenges that remain to be addressed and overcome in future
studies, such as how to analyse the co-fluctuation relations among
global stock indices with different transaction dates, why the
correlation coefficients are different between the stock indices,
and how the correlation coefficients of the stock indices affect the
structure of the co-fluctuation relation transmission network
quantitatively. Further, immediate study, will focus on how these
findings can improve understanding of simulating and predicting
the fluctuation of the stock indices.
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