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Systemic chromosome instability in Shugoshin-1 mice resulted
in compromised glutathione pathway, activation of Wnt
signaling and defects in immune system 1in the lung

HY Yamada', G Kumar', Y Zhang', E Rubin?, S Lightfoot', W Dai®* and CV Rao'

Mitotic error-mediated chromosome instability (CIN) can lead to aneuploidy, chromothripsis, DNA damage and/or whole
chromosome gain/loss. CIN may prompt rapid accumulation of mutations and genomic alterations. Thus, CIN can promote
carcinogenesis. This CIN process results from a mutation in certain genes or environmental challenge such as smoking, and is highly
prevalent in various cancers, including lung cancer. A better understanding of the effects of CIN on carcinogenesis will lead to novel
methods for cancer prevention and treatment. Previously Shugoshin-1 (Sgo1‘/+) mice, a transgenic mouse model of CIN, showed
mild proneness to spontaneous lung and liver cancers. In this study, adoptive (T/B-cell based) immunity-deficient RAG1 =/~ Sgo1~/*
double mutant mice developed lung adenocarcinomas more aggressively than did Sgo1~/* or RAG1 ™/~ mice, suggesting immune
system involvement in CIN-mediated lung carcinogenesis. To identify molecular causes of the lung adenocarcinoma, we used
systems biology approach, comparative RNAseq, to RAG1~/~ and RAG1™/~ Sgo1~/*. The comparative RNAseq data and follow-up
analyses in the lungs of naive Sgo1~/* mice demonstrate that, (i) glutathione is depleted, making the tissue vulnerable to oxidative
stress, (ii) spontaneous DNA damage is increased, (iii) oncogenic Wnt signaling is activated, (iv) both major branches of the immune
system are weakened through misregulations in signal mediators such as CD80 and calreticulin and (v) the actin cytoskeleton is

misregulated. Overall, the results show multi-faceted roles of CIN in lung carcinoma development in Sgo

1=’* mice. Our model

presents various effects of CIN and will help to identify potential targets to prevent CIN-driven carcinogenesis in the lung.
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INTRODUCTION

Aneuploidy has been predicted to cause cancer."? Aneuploid cells
are created through genomic instability, which has two major
modes, mitotic error-mediated chromosome instability (CIN) and
DNA metabolism-mediated microsatellite instability, which are not
mutually exclusive. CIN can lead to a variety of outcomes in
post-mitotic cells, including tetraploidy, chromothripsis, DNA
damage and aneuploidy.>® Further, the gain of oncogenes or
loss of tumor suppressors may result. Thus, CIN can serve as a
mutator.? In addition, CIN can produce DNA damage and facilitate
mutagenesis.> Micronuclei formation and chromothripsis may also
occur, leading to extensive genome shuffling and mutation.%”
Thus, CIN is mutagenic on a cellular level. Carcinogenic
environmental factors, such as hepatitis virus infection®® and
smoking,'®"" can produce CIN. These cell biological observations
and other evidence strongly suggest a role of CIN in
carcinogenesis.

Tumor-mass sequencing data indicate that the genes that are
frequently mutated in colon cancer function to prevent CIN,
suggesting that progressive CIN is an integrated process in
colonic carcinogenesis.®> Most primary lung cancers carry loss of
heterozygosity, which is associated with CIN, further implicating
CIN in lung carcinogenesis.'> CIN can be caused by mutations in
various genes, many of which are bona fide mitotic regulators,
such as mitotic spindle checkpoint components BubR1 and Mad2,

the mitotic motor Cenpe, and chromosome cohesion regulators
such as Sgo1. CIN model mice, transgenic mice with mutations in
mitotic regulators, were created to investigate the effects of CIN
on carcinogenesis in vivo.'>7'®

The consequences of CIN and aneuploidy in vivo have been
identified and characterized using animal models. Aneuploidy
causes gross transcriptome changes'” and imbalances in protein
generation, producing proteotoxic effects that lead to endoplas-
mic reticulum (ER) stress, lysosomal stress and overwhelmed
autophagy in the cells.'”® Mouse studies showed that high rates of
CIN and aneuploidy do not always translate directly to high rates
of cancer, and that CIN can be both oncogenic and tumor
suppressing in different organs.*'??° Therefore, the relationship
between CIN and carcinogenesis is not straightforward and is
organ specific. Cell death is a determining factor. A high rate of
CIN and aneuploidy can lead to cell death rather than
tumorigenesis.2' Another possible determining factor is the
involvement of immune system and its surveillance to remove
aneuploid cells. G Kroemer's group showed that tetraploid cells
express specific cell surface antigens, including calreticulin (an ‘eat
me’ signal), and proposed that immune surveillance specifically
targets the tetraploid cells to suppress cancer.’*** Although
whether immune surveillance is involved in removing CIN cells
in vivo remains to be investigated further, there are reports
supportive to the notion linking smoking, CIN and immune
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function, such as, tobacco smoking is known to decrease immune
functions in lung,>** and lung cancers with smoking signatures
respond better to immune checkpoint PD1 inhibitor therapy.?®

Shugoshin-1 (Sgo1) regulates chromosome cohesion and
centrosome integrity.’2° Sgo1 expression is abnormal in various
human cancers, including colon, lung and liver cancer.3°33 The
inner centromere-Shugoshin mitotic network was shown to be
dysfunctional in numerous cancers, suggesting that proper Sgo1
function is crucial to preventing CIN and cancer3* To further
investigate carcinogenesis for cancer prevention, we generated
Sgo1™"* CIN model mice, and have demonstrated the
involvement of CIN in carcinogenesis in several organs, including
the colon, liver and lungs.?>**>>” The colon in particular showed
a modified carcinogenesis profile after treatment with the
carcinogen Azoxymethane.?>*3’ In the Sgo1~"* CIN model mice,
the lungs and liver were also prone to spontaneous
carcinogenesis.3® Spontaneous hepatic and lung carcinogenesis
were reported in other CIN models, including BubR1™"* and
Mad2~’* mice,'® suggesting that these cancers may be common
consequences of CIN.

CIN has shown to be at least correlational, if not causal, to
carcinogenesis in the lung. Smoking increases copy number
variations and CIN in lungs in humans and animal models.3®3° CIN
is a marker of poor prognosis for non-small cell lung cancer.*
Inducible Mad2 overexpression CIN model mice, which are
defective in the mitotic spindle checkpoint and show CIN,
demonstrated a higher rate of recurrence of lung tumor in an
experimental setting in which lung tumorigenesis was at first
induced through k-ras oncogene addiction then the tumors
regressed by the oncogene shutdown.*’

As above, the link between CIN and immune function has
only been suggestive and the role in carcinogenesis requires
further study. In this study, we generated RAG1 ™'~ Sgo1™"* mice
and assessed carcinogenesis to investigate the involvement of
adoptive immunity and immune surveillance without or with high
rate of CIN (that is, Sgo1~’* background) in vivo. Recombination
activating gene 1 (RAGT) is involved in activation of immuno-
globulin V-D-J recombination. The loss (—/-) of RAG1 leads
to compromised adoptive immunity,** yet due to exclusive
dependence on another immune system branch mediated by
natural killer (NK) cells,®®* no lung tumor proneness has
been reported. We observed enhanced carcinogenesis in lungs
from RAG1~/~ Sgo1™"* mice, suggesting a link between
CIN-aggravated lung carcinogenesis and adoptive immunity. To
investigate the molecular link, we performed next-generation
sequencing/RNAseq in lungs from RAG1 ™/~ and RAG1™/~ Sgo1™/*
mice, and identified culprit pathways responsible for the lung
carcinogenesis. We validated the pathways in naive Sgol~’*
mouse lungs, uncovering the multi-faceted carcinogenic effects of
CIN in the lung for the first time.

RESULTS

RAG1~/~ Sgo1~’* mice showed high incidence of lung
adenocarcinoma
Sgo1~"* mice develop with normal appearance and with modest
proneness to spontaneous carcinogenesis in the lungs and liver at
12 months of age and later>® RAG1™/~ mice also develop
normally with no apparent tumors up to 12 months, despite their
compromised adoptive immunity.**** The relatively normal
phenotype of RAG1™/~ mice in the laboratory environment is at
least partly explained by surveillance of NK cells, another major
branch of the immune system.*>%3

To assess the effect of the loss of adoptive immunity in the
Sgo1~’* CIN model, we generated RAG1~/~ Sgo1™’* mice. All
animals (RAG1™/~ (n=20), Sgo1™’* [n=32], RAG1 ™/~ Sgo1™'*
(n=16)) developed and lived normally until the ages of 6 and
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Table 1. Gross tumors in RAG1 /7, Sgo1™’* and RAG1~/~ Sgo1™/*
mice

RAGT™~  RAGI™~ Sgo1="*  Sgo1="*
Found dead 2 (10%) 6 (37.5%) 0 (0%)
Gross lung tumor 0 (0%) 6> (37.5%) 3 (9.4%)
Normal-looking lung 18 (90%) 4 (25%) 29 (90.6%)
N (total) 20 16 32

Animal numbers for 12 months end point cohorts. ®Significantly different
from RAG1 ™/~ mice by Fisher’s exact test, P < 0.004. PSignificantly different
from Sgo1~’* mice by Fisher's exact test, P < 0.05.

9 months. However, significantly more RAG1 ™/~ Sgo1™"* mice

(n=6; 37.5%) died by the 12 months end point (Table 1). The main
cause of death was gross lung tumors. Six among the 10 surviving
RAG1 ™/~ Sgo1~"* mice (37.5%) had gross lung carcinomas at the
12 months end point (Figure 1a). Previous studies indicated a
modest increase in spontaneous liver cancers®® and lung cancers®®
(Table 1) in Sgo1~/* mice. However, the cancers did not cause a
significant increase in lethality because of the smaller size by
12 months of age. The RAG1 ™/~ background facilitated lung
carcinoma development in Sgo1~’* such that it manifested as
lethality by 12 months of age. Gross liver tumors were not
observed, although histological abnormalities such as nuclear
pleomorphism (variation of nuclear size), megamitochondria and
binucleation were observed in mice with Sgo1~’* background. No
significant inflammatory infiltrates or steatosis were appreciated in
any of the sections examined. (Supplementary Figure 1). When we
performed lung immunohistochemistry (IHC) for DNA double-
strand break marker y-H2AX in RAG1~/7Sgo1™’* double mutant
and compared with RAG1~/~ and Sgo1~/* single mutants, there
were clear difference in y-H2AX staining pattern between Sgo1~/*
and Sgo1*/*. Sgo1~"* background specifically showed higher
y-H2AX in alveoli, but not in branchioli (Figures 1b and c), which
suggests that the branchioloalveolar-in type lung tumors may
have originated from alveolar region with higher DNA damage.

Transcriptomic differences in normal-looking lung tissues from
RAG1~/~ and RAG1™/~ Sgo1™"* mice

To investigate the molecular causes that led to high incidence of
lung carcinomas in RAG1~/~ Sgo1™’* mice, we performed
RNAseqg-transcriptome analyses using normal-looking lung tissues
from RAG1 ™/~ (N=3) and RAG1™/~ Sgo1™/* (N=3) mice. Using
the data set, we identified differentially expressed genes. There
were total of 153 hits with a twofold expression difference
threshold, P < 0.05; 72 upregulated genes and 81 downregulated
genes (complete list in Supplementary Data). Heat map for the
identified genes showed consistent differences between RAG1 ™/~
and RAG1~/7Sgo1™"* groups (Figure 2a). Significantly affected
pathways (z score >2) were identified, and indicated as Kyoto
Encyclopedia of Genes and Genomes pathways (Figure 2b).
Upregulated pathways included various amino-acid metabolism
(for example, phenylalanine, tyrosine and tryptophan biosynthesis
(z score 16.24); phenylalanine metabolism (10.02); alanine,
aspartate and glutamate metabolism (7.29); tyrosine metabolism
(6.85); and cysteine and methionine metabolism (6.66)), and
immune function-related (for example, allograft rejection (8.98);
graft-vs-host disease (8.79); autoimmune thyroid disease (7.78);
systemic lupus erythematosus (4.83); and antigen processing
and presentation (4.62)). Downregulated pathways included
phenylalanine metabolism (7.23), tyrosine metabolism (4.86) and
graft-vs-host disease (4.02). Overall, the pathway analysis indicated
significant misregulations in amino-acid metabolism and immune
system. Notably, some pathways were commonly found in colonic
RNAseg-transcriptome analysis in our recent study:*’ diabetes
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Figure 1. RAG1~/~ Sgo1~’* mice developed lung adenocarcinomas. (a) RAG1~/~ Sgo1~’* mice developed lung adenocarcinomas with the
appearance of bronchioloalveolar in-type (that is, cuboidal cells lining the alveolar septa and projecting into alveolar spaces). RAG1~/~ and
most Sgo1~’* did not show significant histopathological changes, with some exceptions in Sgo1~’* that developed adenocarcinomas in
smaller sizes. (b) To assess DNA double-strand break, IHC for y-H2AX was performed. Percentages for y-H2AX positive cells were high in
Branchioli, but varied between Sgo1~'" and Sgo1*"* backgrounds in alveoli. Al, alveole; Br, branchiole. (c) Rag1~’~Sgo1~’* showed highest
percentage of y-H2AX positive cells. However, signals at branchioli showed little difference (NS, nonsignificant). The difference between

Sgo1~"* and Sgo1™* backgrounds were evident only in alveoli.

mellitus and graft-vs-host disease. The results indicated that the
immune response (graft-vs-host disease) may be a pathway
compromised in multiple organs in Sgo1-CIN mice.

Sgo1~’* lungs have less glutathione and more DNA damage

A noteworthy gene among the differentially expressed genes
was glutathione-S-transferase mu5 (GSTM5) (3.37-fold down;
Figure 3a). Glutathione is a major cellular anti-oxidant, and this
GST downregulation would decrease the efficacy of detoxification
and the oxidative stress response through glutathione
conjugation. We suspected that lungs of Sgol~'* mice are
vulnerable to oxidative stress because of a decrease in the
glutathione-mediated protection. To test the hypothesis, we made
tissue extracts from the lungs of untreated 12-month-old
wild-type (n=6) and Sgor” mice (n=5), and measured levels
of total cellular glutathione (oxidized GSSG and reduced GSH
forms combined) in the lungs (Figure 3b). The wild-type lung
tissues were estimated to have 18.8-fold higher total glutathione
(P=0.0325). Quantitative real-time PCR with wild-type and
Sgo1~’" mice lungs confirmed that GSTM5 mRNA expression
was decreased (Figure 3c). Thus, the lungs of Sgo1~/* mice lack
glutathione protection in two aspects; decreases in glutathione-S-
transferase and total glutathione pool. The double decreases in
GSTM5 expression and total glutathione pool would have roles in
weakening resistance to oxidative stress in Sgo1~'* lungs, aiding

in the creation of a carcinogenesis-prone condition. To assess the
degree of DNA damage, we measured y-H2AX, which was
significantly increased in Sgo1~’* lungs (Figure 3d).

Wnt signaling is activated in Sgo1~’* lungs
Secreted frizzled-related protein 4 (SFRP4) was among the most
downregulated genes (6.05-fold downregulation). SFRP4 is a
soluble modulator/inhibitor of Wnt signaling, and its under-
expression activates Wnt signaling.** We hypothesized that Wnt
signaling is activated in Sgo1~* lungs, and tested the hypothesis
by monitoring markers for Wnt signaling. As predicted from
RNAseq analysis, SFRP4 protein levels were 30% lower in
untreated Sgo1~'* lungs (P < 0.05, Figure 4a), and Wnt signaling
effector B-catenin was 50% higher in Sgo1~’* lungs (P < 0.05).
Although SFRP4 localized in both alveolar cells and branchiolar
cells in control wild-type mice, in Sgo1~’* mice the localization
occurred mainly in branchioli cells (Figure 4b). To confirm Wnt
signaling activation, we used quantitative PCR to test the
expression of Wnt target genes. Wnt target genes were
upregulated 8-fold in Lif1 and 1.8-fold in cyclin D1 (Figure 4c).
R-spondin3 (Rspo3) is a secreted protein that has been
implicated in Wnt signaling. Rspo3 is aberrantly expressed
at high levels in approximately half of all Keapl-mutated
human lung adenocarcinomas, and may promote cancer
aggressiveness.*® In zebrafish, Rspo3 knockdown activates

Oncogenesis (2016), 1-10
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Figure 2. Differentially expressed pathways in normal-looking lung tissues from RAG1~/~ and RAG1™/~ Sgo1™’* mice. Next-generation
sequencing/RNAseq identified 72 upregulated and 81 downregulated genes in lungs of RAG1 ™/~ Sgo1™"* mice compared with RAG1 ™/~
(P < 0.05, 2-fold). (a) Heat map for genes with P < 0.05, +2-fold difference, indicating consistency within a group and difference between two
groups. The colors represent the range of gene expression. Black, a reduced expression value; red, an increased expression value. The deeper
color is a higher expression values whether reduced or increased. (b) Pathway analysis identified most affected pathways (z score >2).

Asterisks (*) indicate immune function-related pathways shared with previous colonic transcriptome analysis between wild-type and Sgo

mice.”

Wnt/B-catenin signaling, which is involved in anteroposterior
patterning.*® A 2.61-fold downregulation in Rspo3 expression was
observed in the RNAseq analysis on the RAG1~/~ background,
which was confirmed in quantitative RT-PCR in wild-type and
Sgo1™’* (Figure 4d). These findings further demonstrate
misregulation in Wnt signaling in normal-looking lungs on the
Sgo1~"* background.

Immunomodulator proteins CD80 and calreticulin are
downregulated in Sgo1~"* lungs

As lung carcinomas preferentially developed on the RAGI
background, we hypothesized that adoptive immunity is involved
in suppressing CIN cells in the lung, and that genes or proteins
involved in the immune system would be misregulated in Sgo1.
The CD80 precursor was among the upregulated genes in
RAG1~/7Sgo1~’* (4.3-fold). CD80 and CD86 work as ligands on
the surface of activated B cells and monocytes, and bind to the
CD28 receptors on T cells for T-cell activation and survival.

—/—
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However, the RNAseq analyses showed no significant differences
in CD86 and CD28 expression (Figure 5a). To test whether CD80
is misregulated in naive Sgol, we compared CD80 protein
expression in control and Sgo1~/*. CD80 mRNA was significantly
downregulated (P=0.0031) and the protein was modestly reduced
(Figure 5b), suggesting partial impairment of T/B-cell activation in
Sgo1 without RAG1 /™.

As many immunomodulators are regulated post-translationally,
we also tested protein expression of select immunomodulators.
As RAG1™/~ mice depend on NK-cell function to compensate for
compromised adoptive immunity, we hypothesized that NK-cell
activation may also be reduced on the Sgo1~’* background.
Supporting this notion, protein expression of calreticulin (the
‘eat-me’ signal for NK cells) was reduced (Figures 5b and c).
In addition, we observed lower expression of genes indicative of
NK-cell activation in the RNAseq. Integrin alpha-D (Itgad) is
an adhesion molecule whose upregulation occurs in lung
macrophages and is necessary for expression of TNF-alpha and
recruitment of neutrophils to the lungs.*” Killer cell lectin-like
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Sgo1~/* lungs carried less glutathione and more DNA damage. (a) RNAseq analysis in RAG! =/~ and RAG17/7Sgo1~’* indicated a
significant reduction in glutathlone -S-transferase mu5 (GSTM5) expression in Sgo1~
Wild-type and naive Sgo1 mice were compared with investigate whether the RAGT ™~

* background (b) Sgo1~"* lungs carry less glutathione.
background affected the results. We measured the

total levels glutathione (GSSG and GSH combined) in lungs of wild-type (n=5) and Sgo1" * (n=5) mice with an OxiSelect kit (Cell Biolabs Inc.).
We observed a significant reduction (~18.8-fold difference) in total glutathione in Sgo1 mice, P < 0.05. (c) Significant decrease in GSTM5
expression was confirmed in naive Sgol lung with quantitative reverse transcrlptase (gRT)-PCR. (d) DNA damage marker y-H2AX was

quantified with quantitative immunoblot, revealing increased y-H2AX in Sgo1~’

receptor, subfamily A, member 3 (Klra3) is an NK-cell receptor that
is required for activation. Major histocompatibility complex class |
recognition receptor (Ly49l, Klra9) serves as an NK-cell activator®®
and is involved in controlling cytomegalovirus infection.** The
reduction in receptors for NK-cell activation would explain
the higher degree of lung carcinoma development in RAG1 ™/~
Sgo1~"* animals, because of reduced NK-cell-mediated surveil-
lance for mutagenic CIN cells. The reduction was confirmed in
naive Sgol ~/* with quantitative reverse transcriptase-PCR, and
was not limited to the RAG1 ™'~ background (Figure 5d).

Downregulations of T- and B-cell activation markers in Sgo1~/*
lung

In the above results provided, we further tested expression of
markers for T-cell activation (that is, CD8, IL-1B, IL-6, IFN-q;
Figure 6a), B-cell activation (CD22; Figure 6b), and T- and B-cell
activation (CD24; Figure 6¢). They all indicated significant
(P < 0.05) downregulation in naive Sgo1~’* lungs, showing an
immunocompromised state.

Cytoskeleton disturbance

Other notably downregulated genes in the RNAseq were Formin2
(4.40-fold), thymosin beta (Tb15c; 4.56-fold) and thymosin beta-
like (LOC666244; 4.56-fold). All of these genes are involved in
regulation of the actin cytoskeleton.

DISCUSSION

To suppress pre- or early-cancer cells and prevent cancers, various
strategies can be utilized. These strategies include inhibition
of oncogenic signaling, activation of cell death, activation of
tumor suppressors that induce senescence, differentiation and/or
non-proliferation, and immune surveillance.>® However, compre-
hensive pathway identification is necessary to formulate an
effective strategy without an oversight to antagonizing multiple

* mice lung compared with wild-type.

pathways. For the purpose, CIN models are uniquely valuable.
Cellular level CIN, caused by environmental factors or gene
mutations, can manifest locally as an initial step of carcinogenesis.
The use of tissue/organ-level comparative RNAseq-transcriptomics
with CIN mouse models can magnify the molecular effects that
occur in cells with CIN, enabling us to identify the cellular effects
of CIN in the particular organ. Thus, the use of bioinformatics with
a CIN model is an effective way to identify initial molecular
changes in an organ of interest.

The present bioinformatic-based characterization study
suggested that CIN is involved in the development of lung
adenocarcinomas through the pathways newly identified in the
study. We identified reprogramming in transcription in Sgo1-CIN
mice lungs, leading to (1) decrease in protection by glutathione
(GSTMS5, glutathione pool), (2) increase in DNA damage possibly
with CIN itself and with oxidative stress, (3) activation of Wnt
signaling (SFRP4-f catenin-cyclinD, Lif1), (4) decrease in T/B-cell
activation and immune surveillance (CD80, CD8, IL-18, IL-6, INF-1q,
CD22, CD24), (5) decrease in NK-cell activation and immune
surveillance (calreticulin, ltgad, Klra3, Klra9) and (6) others such as
actin cytoskeleton disturbance. All can create pro-carcinogenic
lung tissue environment (Figure 7).

Aneuploidy is an outcome of CIN. We anticipated that
CIN-mediated transcriptomic changes would show some simila-
rities with those in aneuploid cells. Aneuploid cells in diverse
organisms, including yeast, plants, mice and humans, showed
highly related gene expression patterns that are conserved
between species. In aneuploid cells, genes that were involved in
the response to stress were consistently upregulated, and
genes associated with the cell cycle and cell proliferation were
downregulated.” However, our results indicated organ-specific
and nonspecific (that is, common among two or more organs)
transcriptomic changes.>” Major nonspecific pathways that may
be considered CIN signatures are involved in oxidative stress
response and immune functions. We speculate that the difference
between aneuploid models and CIN models is simply the

Oncogenesis (2016), 1-10
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cells in Sgo1~* mice. (c) Wnt target genes, Lif1 and cyclin D1, were significantly upregulated, indicating Wnt signaling activation. (d) Wnt

component Rspondin3 was downregulated both in RAG1~/~

characteristics of these two models. Aneuploid models carry
aneuploid cells uniformly in all cells of the body, whereas CIN
models can generate various outcomes after mitosis, such as
apoptotic and necrotic cells, senescent cells and aneuploid cells. In
CIN models, aneuploid is only one possible outcome. As a result,
CIN models only occasionally carry aneuploid cells, and may do so
temporarily.

In light of our results, previous results about lung tumor
recurrence®' in inducible Mad2 overexpression mice may require
re-interpretation. Thus far, cells with CIN were interpreted as a
source of recurrence, and involvement of the immune system
(or the lack thereof) in recurrence was not considered earlier. To
capture various processes in vivo as a whole and to elucidate the
complex competition among pro- and anti-carcinogenic events,
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and RAG1"* backgrounds, indicating Wnt misregulation in Sgo1~/*.

the bioinformatic systems biology approach has demonstrated its
usefulness.

Metabolic misregulation is another aspect of Sgo1-CIN our
results indicated. It is consistent with reports from Drosophila
mad2 model that CIN causes lethality with metabolic stress
as well as oxidative stress,>’ suggesting that CIN commonly affects
cellular metabolism and oxidative stress pathway over various
species.

Overall, our bioinformatic results indicated that CIN can
influence carcinogenesis and possibly cancer recurrence through
multiple pathways. The results also suggest possible counter-
measures: glutathione supplementation, removal of CIN cells
through targeting CIN-specific markers, Wnt signaling attenuation
and immune restoration. Lung cancer is the most lethal cancer



worldwide: it is predicted to claim 158 080 lives in the United
States alone in 2016. >2 Thus, the rapid development of prevention
measures is imperative. This study aided in identifying potential
targets for the preventive drug development, and the results may
lead to a combinatorial chemoprevention measure simultaneously
targeting multiple pathways for better efficacy.

MATERIALS AND METHODS

Animals

Generation, genotyping and characterization of mouse embryonic
fibroblasts (MEF) and the colonic carcinogenesis assay with Azoxymethane
injections in Sgo1~’* haploinsufficient mice have been described
earlier?®?” RAG1 ™/~ mice were obtained from Dr Naveena Janakiram
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(OUHSQ). All mice were maintained in the OUHSC BRC rodent barrier
facility. Initially, RAG1~/~ mice and Sgo1~’* mice were mated to generate
F1; RAG1~/* Sgo1~/* mice, then F2; RAG1~/~ Sgo1™/*, RAG1 /7, Sgo1™"*
and RAG1~/* mice that served as controls. Sample size was determined
following Mead's resource equation. Group designation was used for
randomization: all F2 litters were separated at the weaning (3 weeks of
age) to male cage and female cage, and the cage and animals received a
number. All animals were genotyped by PCR using genomic DNA from tail.
After genotyping, we maintained all mice with regular diet (Purina) for 6, 9
or 12 months without any experimental treatment, then collected samples
after killing at the end point based on the birth date/age. All mice were
handled equally and both genders were used. Animal’s genotype was not
informed to the researcher(s) involved in sample collection. All mice were
generated with the non-cancer-prone C57BL/6 background. All treatments
complied with protocols approved by the OUHSC Institutional Animal Care
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Figure 5. Immunomodulators for both T/B cells and NK cells were downregulated in Sgo1~’*. (a) T/B-cell activator CD80 precursor was
accumulated in RAG1~/7Sgo1~/* compared with RAG1~/~, suggesting a misregulation in T/B activation. There was no significant (NS) change
in CD28 and CD86, which form complexes with CD80 to activate T/B cells. (b) In naive Sgo1~’* mice, CD80 protein amount was modestly
reduced and NK-cell target (the ‘eat me’ signal) calreticulin was reduced, suggesting that NK-cell-mediated CIN-cell removal may be
compromised. CD80 mRNA was significantly downregulated in naive Sgo1~/*. (c) Consistent with immunoblots, IHC also indicated that CD80
and calreticulin proteins were reduced in Sgo1~/* with RAG1"* background. (d) Markers of NK-cell activation (Itgad, Klra3 and Ly49l) were
also downregulated, suggesting dysfunction in NK cells in Sgo1~/*, both in RAG1~/~ and RAG1™* backgrounds.
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Figure 6. Decreases in markers for T- and B-cell activation in naive
Sgo1~’* lungs. Specific markers for T- and/or B-cell activation were
quantified by real-time PCR in naive Sgol1~’* lungs. (a) T-cell
activation (CD8, IL-1p, IL-6, IFN-a), (b) B-cell activation (CD22) and
(c) T- and B-cell activation (CD24). The activation markers all indicated
significant (P < 0.05) downregulation in naive Sgo1~"* lungs.

and Use Committee. Samples from 12-month-old naive Sgo1~’* and
control wild-type mice that were used for confirmatory experiments were
obtained from a previous study.>®

IHC and immunofluorescence

Lung tissues were fixed in 10% formalin, paraffin embedded and subjected
to IHC (Histostain SP kit or SuperPicture 3rd Gen IHC kit, Life Technologies,
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through CIN itself and oxidative stress and (iv) reduced immune
surveillance. Both adoptive immunity and NK-cell-mediated
cytotoxicity are decreased, and (v) cellular effects, including a
disturbance in actin cytoskeleton regulators. Mechanism for the
transcriptomic reprogramming warrants future investigation.

Grand Island, NY, USA). The following primary antibodies were used at
1.0 ug/ml: anti-phospho-H2AX (yH2AX, Novus Biologicals, Littleton, CO,
USA; NBP-1-19931), anti-SFRP4 (Abcam, Cambridge, MA, USA; ab154167),
B-catenin (Santa Cruz Biotechnology, Dallas, TX, USA; SC-7199), anti-actin
(Cell Signaling, Danvers, MA, USA; 4970), anti-calreticulin (Novus
Biologicals; NB600-101) and anti-CD80 (R&D Systems, Minneapolis, MN,
USA; AF740).

Four-to-six mice per strain were analyzed. At least 10 IHC images were
captured from each tissue. The percentages of IHC-positive cells were
calculated. Data were expressed as means+s.d., or as variances.
The differences between groups were analyzed using Student's t-test
(unpaired) with Graphpad Prism5 software (La Jolla, CA, USA).
Immunofluorescence images were taken with a confocal microscope
(Leica SP2 using LCS Software, Mannheim, Germany) in the OUHSC
Laboratory for Molecular Biology and Cytometry Research.

Histopathology

Histopathological characterization was performed in a blinded manner by
a histopathologist, with duplicated hematoxylin/eosin-stained slides for
each sample.



Immunoblots and quantification

Our standard procedures were followed.>® Briefly, the lysates were
aliquoted and the protein content was determined by Bradford reagent.
The aliquots were stored at —80 °C. All primary and secondary antibodies
were first standardized for dilution and were then used accordingly.
Proteins were resolved on 8-12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis, transferred to nitrocellulose membrane and probed
with specific antibodies overnight at 4 °C. The membranes were washed
three times with Tris-buffered saline (pH 7.4) for 15 min and were
then incubated with anti-rabbit, anti-goat or anti-mouse horseradish
peroxidase-conjugated secondary antibody (1:5000 dilutions in 2.5% milk)
and visualized using chemiluminescence reagent (Thermo Scientific,
Waltham, MA, USA). B-Actin was used as the loading control. Densitometry
of various proteins and their respective loading controls from the same
blot was performed using ImageJ 1.43 software (NIH, Bethesda, MD, USA).
Relative optical density was calculated by dividing the densitometry of
protein with that of the respective loading control.

Next-generation sequencing/RNA sequencing

We isolated total RNA from lung tissues of RAG1 ™/~ (N=3) and RAG1™/~
Sgo1_/+ (N=3) mice. The RNA samples were submitted to the OUHSC
Laboratory for Bioinformatics core facility for library construction and RNA
sequencing with an lllumina MiSeq next-generation sequencer with each
run generating approximately 30 million 2x 150 bp paired end reads. The
readouts were analyzed with Genesifter (Perkin Elmer, Seattle, WA, USA).
Reads were normalized using mapped reads and base-lined to the data set.
Analysis of differential gene expression of the normalized signal values
between the control and experimental group was done using EdgeR, a
moderated t-test, with Benjamini and Hochberg correction. P < 0.05 and
twofold expression thresholds were used to determine differentially
expressed genes. Comparative RNAseq data sets were deposited to
GEO-NCBI with accession number GSE84383.

Total glutathione quantification

We used the OxiSelect Total Glutathione (GSSG/GSH) Assay Kit (Cell Biolabs
Inc, San Diego, CA, usa; STA-312) and followed the instructions. OD**®
measurements and curve plotting were performed with Clariostar (BMG
LABTECH, Cary, NC, USA).

Quantitative real-time PCR

We followed procedures described previously.>® Total RNA from normal
and tumor samples was extracted using TRizol reagent for total cellular
RNA (Invitrogen, Grand Island, NY, USA) per the manufacturer’s instruc-
tions. Equal amounts of DNA-free RNA were used for reverse transcription
(RT) reactions to make complementary DNA using an iScript cDNA
synthesis kit (Bio-Rad, Hercules, CA, USA) per the manufacturer’s protocol.
Real-time PCR was carried out in a 12-pl reaction volume containing 5 pl of
diluted complementary DNA (50 ng) and FastStart Universal SYBR Green
master (Roche, Basel, Switzerland) and primers (Invitrogen). All PCRs were
performed in a Bio-Rad iCycler iQTM5 real-time PCR detection system. The
fluorescence threshold values (Ct) were calculated. Relative mRNA levels
were assessed by standardization to actin or glyceraldehyde 3-phosphate
dehydrogenase. Results are expressed as a relative fold difference in gene
expression compared with control. Relative gene expression was
calculated using the 2-AACT formula. PCR conditions were as follows:
denaturation at 94 °C for 10 min, followed by 40 cycles at 95 °C for 30,
60 °C for 30s and 72°C for 45s. All experiments were performed in
triplicate.
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