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Multi-omics landscapes of colorectal cancer subtypes
discriminated by an individualized prognostic signature
for 5-fluorouracil-based chemotherapy
M Tong1, W Zheng1, H Li, X Li, L Ao, Y Shen, Q Liang, J Li, G Hong, H Yan, H Cai, M Li, Q Guan and Z Guo

Until recently, few prognostic signatures for colorectal cancer (CRC) patients receiving 5-fluorouracil (5-FU)-based chemotherapy
could be used in clinical practice. Here, using transcriptional profiles for a panel of cancer cell lines and three cohorts of CRC
patients, we developed a prognostic signature based on within-sample relative expression orderings (REOs) of six gene pairs for
stage II–III CRC patients receiving 5-FU-based chemotherapy. This REO-based signature had the unique advantage of being
insensitive to experimental batch effects and free of the impractical data normalization requirement. After stratifying 184 CRC
samples with multi-omics data from The Cancer Genome Atlas into two prognostic groups using the REO-based signature, we
further revealed that patients with high recurrence risk were characterized by frequent gene copy number aberrations reducing
5-FU efficacy and DNA methylation aberrations inducing distinct transcriptional alternations to confer 5-FU resistance. In contrast,
patients with low recurrence risk exhibited deficient mismatch repair and carried frequent gene mutations suppressing cell
adhesion. These results reveal the multi-omics landscapes determining prognoses of stage II–III CRC patients receiving 5-FU-based
chemotherapy.
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INTRODUCTION
For all patients with stage III colorectal cancer (CRC) and some
patients with stage II CRC likely to be at high risk, 5-fluorouracil
(5-FU)-based adjuvant treatments is the first-line treatment.1,2

However, about 20–30% of stage II–III patients receiving
5-FU-based chemotherapy will develop tumor relapse.1,3 Although
some molecular markers such as microsatellite instability (MSI)
and loss of heterozygosity at chromosome 18q (18qLOH) have
been proposed to guide 5-FU-based chemotherapy for CRC
patients,4 none has been adequately validated for clinical use.4,5

Therefore, it is necessary to explore new prognostic signatures to
select patients who most likely to be benefit from the adjuvant
chemotherapy after surgery.
Researchers often identified prognostic signatures for chemo-

treated patients and then proved its drug benefit predictive
value by showing that the identified signatures could not predict
prognoses of patients not receiving chemotherapy.6,7 However,
this strategy is arguable because patients receiving and not
receiving the chemotherapy might have systemic differences in
malignant degree of tumor or corporeity.8 In order to increase
the relevance of prognostic signatures to chemotherapy, some
researchers turned to identify prognostic signatures from drug
resistant genes extracted from transcriptional profiles for a panel
of cancer cell lines.9–11 For example, some studies9,11 extracted
drug resistance genes as differentially expressed genes (DEGs)
between a particular CRC cell and the corresponding resistant
cell induced by 5-FU. However, the majority of such DEGs might
represent drug-induced transcriptional changes irrelevant to the
drug resistance.12,13 Moreover, a particular cell line model cannot

capture the genetic heterogeneity among tumors.14,15 To
capture the heterogeneity of cancer in drug response, it would
be more reasonable to study a panel of cell lines for each cancer
type.16,17 Nevertheless, the clinical relevance of cancer cell
models is not guaranteed.16,17 Thus, for candidate signature
extracted from cell models, it is necessary to evaluate their
clinical relevance before using them to extract drug prognostic
signatures.
Notably, current cancer therapeutics is generally dosed in

combination,18,19 and thus it is difficult to study the clinical
mechanisms of drug resistance for a single drug in clinical
practices. Thus, using cell models would be the only practical
choice for identifying resistant signatures for a single drug.9,20

Recently, we have made a strict mathematical derivation to prove
that if a list of genes represent true resistance genes for a single
drug, then their overlaps with clinically relevant drug resistance
genes (CRGs) for a combination chemotherapy including this drug
should be the CRGs for the shared drug, given that the drugs used
in combination had no or limited antagonistic effects.12 Here, the
CRGs represent the DEGs between the non-responders and
responders of patients treated with combination chemotherapy.
Thus, if a set of genes associated with 5-FU GI50 (50% growth
inhibition) of cancer cell lines are significantly consistent with
genes correlated with prognoses of CRC patients receiving
5-FU-based combination chemotherapy, then these genes should
be CRGs for 5-FU, given that patients with poor or good prognoses
should largely represent non-responders or responders to 5-FU
treatment. Based on this assumption and in order to increase
the relevance of prognostic signatures to a particular drug, for

Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China. Correspondence: Professor Z Guo,
Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350108, China.
E-mail: guoz@ems.hrbmu.edu.cn
1These two authors contributed equally to this work.
Received 7 April 2016; revised 27 May 2016; accepted 17 June 2016

Citation: Oncogenesis (2016) 5, e242; doi:10.1038/oncsis.2016.51

www.nature.com/oncsis

http://dx.doi.org/10.1038/oncsis.2016.51
mailto:guoz@ems.hrbmu.edu.cn
http://dx.doi.org/10.1038/oncsis.2016.51
http://www.nature.com/oncsis


example, 5-FU in this study, we could pre-select 5-FU-resistant
genes from cell models, evaluate their clinical relevance and then
use these genes to identify prognostic signatures for CRC patients
receiving 5-FU-based therapy.
Another problem is that most of the reported transcriptional

signatures stratify patients into different risk groups by comparing
their risk scores, usually summarized from expression levels of the
signature genes, with pre-set risk-score thresholds determined
in the training processes.9,21–23 Owing to experimental batch
effects for gene expression profiling,24 the applications of such

risk-score-based signatures to independent samples require data
normalization using a set of samples measured together.24

Thus, the risk classification of a sample depends on the
heterogeneous risk compositions of the other samples adopted
for normalization together.25,26 In contrast, the relative expression
orderings (REOs) of genes within a sample are rather robust
against to experimental batch effects27 and invariable to
monotonic data normalization,25,28,29 rendering them promising
for building robust predictors.25,30,31 Therefore, it is worthwhile to
identify REO-based signatures.

Table 1. Data sets analyzed in this study

Data source Data type Platform Stage Treatment Sample size

Cell line
NCI-60 mRNA Affymetrix U133 A — 5-FU 58

CRC tissue
GSE39582 mRNA Affymetrix U133 Plus 2.0 II–III 5-FU and folinic acid 200
GSE14333a mRNA Affymetrix U133 Plus 2.0 II–III 5-FU-based 85
GSE14333a mRNA Affymetrix U133 Plus 2.0 I–III Without 5-FU-based treatment 139
TCGA mRNA IlluminaHiSeq_RNASeqV2 II–III 5-FU-based 184
TCGAb DNA Copy number Genome-Wide Human SNP Array 6.0 II–III 5-FU-based 183
TCGAb Somatic mutation Illumina Genome Analyzer DNA Sequencing II–III 5-FU-based 143
TCGAb MSI Microsatellite Instability Analysis II–III 5-FU-based 166
TCGAb DNA methylation Illumina Infinium Human DNA Methylation 450 II–III 5-FU-based 176

Abbreviations: 5-FU, 5-fluorouracil; MSI, microsatellite instability. aIn this data set, there were 85 samples of patients treated with 5-FU-based chemotherapy
and 139 samples of patients did not accept 5-FU-based treatment. These two groups of samples were analyzed. bAmong the 184 TCGA samples with
mRNA-seq profiles, 183, 143, 166 and 176 samples also had copy number, somatic mutation, MSI and DNA methylation data.

Figure 1. Overview of the workflow used in this study. clinically relevant 5-FU-resistant genes, genes correlates with both cells’ GI50 value for
5-FU and RFS of CRC patients receiving 5-FU-based chemotherapy; CNV, copy number; Exp, expression; GPS, gene pair signature;
Meth, methylation; MSI, microsatellite instability; n, the number of samples; +(− ), genes positively (negatively) correlated with the GI50 values
of 5-FU or the RFS of CRC patients receiving 5-FU-based chemotherapy.
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In this study, using gene expression profiles of a panel of
cancer cell lines with sensitivity data of 5-FU and 200 clinical
tissue samples, we identified a REO-based prognostic signature
consisting of six gene pairs for stage II–III CRC patients treated
with 5-FU-based therapy. The REO-based signature could robustly
stratify patients into distinct prognostic groups in two validation
data sets. Using the 184 CRC samples from The Cancer Genome
Atlas (TCGA) with multi-omics data, we classified the CRC
samples into two groups with the same distinct transcriptional
characteristics corresponding to the prognostics groups. Instead
of analyzing the confounding prognosis data of TCGA with
complex therapy regimens which may confound the survival
outcome,32 we transformed the transcriptional signature to
genomic signature and further revealed distinct genomic and
epigenetic characteristics of the two CRC groups.

RESULTS
Identification of 5-FU-based therapy prognostic gene pair
signature
Using 58 NCI-60 cell lines with GI50 data for 5-FU derived from
nine different tumor types (Supplementary Table S1), we
identified 1131 candidate genes whose expression levels were
likely to be correlated with GI50 values of 5-FU (Spearman
correlation, P-value o0.05). Then, from these 1131 candidate
genes, we extracted 30 genes whose expressions were signifi-
cantly correlated with the relapse-free survival (RFS) time for 200
CRC patients in stage II–III who underwent 5-FU and folinic acid
chemotherapy in the GSE39582 data set (false discovery rate (FDR)
o20%, univariate Cox model) (Table 1). Impressively, the
concordance score for evaluating the clinical relevance of the 30
genes was 100% (binomial test, P-value o1.11E-16, see Materials
and methods). Therefore, we defined the 30 genes as clinically
relevant 5-FU-resistant genes for further analysis.
Then, we developed the prognostic gene pair signature for

5-FU-based therapy according to the flowchart described in
Figure 1. For every 2 of the 30 candidate clinically relevant
5-FU-resistant genes, using the GSE39582 data set as the training
data, we extracted 88 gene pairs whose REOs were significantly
associated with patients’ RFS (FDRo5%, univariate Cox model).
From these 88 gene pairs, a forward selection procedure was
performed to search a set of gene pairs that achieved the highest
C-index according to the classification rule as follows: a sample
was determined to be at high risk if at least a half of the REOs of
the set of gene pairs within this sample voted for high risk;
otherwise, the low risk (see Materials and methods). Finally, we
obtained six gene pairs consisting of 11 genes, denoted as 6-GPS
(Table 2). With the 6-GPS, 104 and 96 of the 200 samples of the

training data were stratified into high- and low-risk groups with
significantly different RFS time (C-index = 0.66; HR= 3.61; 95% CI:
2.12–6.03; P-value = 7.26E-08; Figure 2a). A multivariate Cox
analysis for the 200 CRC showed that the 6-GPS remained
significantly associated with patients’ RFS (HR = 3.05; 95% CI:
1.66–5.60; P-value = 3.36E-04; Table 3), after adjusting for tumor
stage, gender, age, tumor location, mismatch repair status and
gene mutation (BRAF and KRAS). Especially, the 6-GPS could
successfully stratify the 54 stage II and 146 stage III patients into
high- and low-risk groups separately (C-index = 0.73; HR= 6.83;
95% CI: 2.20–21.24; P-value = 1.36E-03 for stage II, Figures 2b;
C-index = 0.64; HR= 2.95; 95% CI: 1.69-5.15; P-value = 6.85E-05 for
stage III, Figure 2c).
Then, from the GSE14333 data set, we chose the 85 samples of

patients in the stage II–III who underwent 5-FU-based chemo-
therapy as the first validation data (Table 1). The 6-GPS
successfully stratified the 85 patients into a high-risk group with
47 patients and a low-risk group with 38 patients (C-index = 0.60;
HR= 2.64; 95% CI: 1.11–6.24; P-value = 1.12E-02; Figure 2d). In the
second validation data set derived from the TCGA data, which
included samples for 36 stage II–III CRC patients with completed
RFS after 5-FU-based therapy, 22 and 14 samples were successfully
stratified into the high- and low-risk groups with significantly
different RFS time(C-index = 0.62; HR= 2.41; 95% CI: 1.13–5.15;
P-value = 1.95E-02; Figure 2e). The means of the pairwise rank
differences of the six gene pairs were 8797, 8954 and 6236 in the
GSE39582, GSE14333 and TCGA data sets, respectively. Obviously,
a REO-based signature of gene pairs with large pairwise rank
differences, which should be difficult to be reversed due to probe
detection biases, could be robust against detection biases of
different platforms.
In addition, when using the 6-GPS to analyze the NCI-60 58 cell

lines, 37 and 21 were classified as resistant-sensitive cell lines,
respectively. The mean of the GI50 values in the resistant cells were
significantly higher than that in the sensitive cells (Figure 3,
Wilcoxon rank-sum test, P-value = 2.56E-04).
Finally, we used the 6-GPS to stratify the 139 samples from the

GSE14333 data set for CRC patients who did not accept
5-FU-based treatment. The result showed that the two groups
stratified by the 6-GPS had no significantly different RFS
(P-value = 0.23; Figure 2f), suggesting that the signature was not
just prognostic for CRC patients in general but predictive for
patients' benefit from 5-FU-based chemotherapy.

Distinct transcriptional characteristics of the prognostic groups
The validation data sets lacked the necessary clinical data for
multivariate Cox analysis. Alternatively, we proved that the
transcriptome difference between the prognostic groups identi-
fied by the 6-GPS in the validation data sets were consistent with
the corresponding difference in the training data set. Using the
Wilcoxon rank-sum test, with FDRo5%, we found 7518 DEGs
between the high- and low-risk groups stratified from the training
data set GSE39582. In the first validation data set GSE14333,
3276 DEGs were found between the high- and low-risk groups
(FDRo5%). The two lists of DEGs had 2302 overlapped genes and
the concordance score of these genes in the two data sets was
99.22% (binomial test, P-valueo1.11E-16). Similarly, for the
second validation data set with TCGA samples, 708 DEGs were
found between the two prognostic groups (FDRo5%). This list of
DEGs had 548 and 304 overlapped genes with the corresponding
DEGs extracted from the GSE39582 and GSE14333 data sets,
with the concordance scores as high as 99.45% (binomial test,
P-valueo1.11E-16) and 99.01% (binomial test, P-valueo1.11E-16),
respectively. These results suggested that differential expressions
between the two risk groups classified by the 6-GPS were
consistent across independent data sets.

Table 2. Composition of the 6-GPS

Signature ROEs (Ra4Rb) β P-value FDR C-index

Gene pair 1 CHTOP4CAPN2 1.22 6.37E-05 1.89E-03 0.63
Gene pair 2 MRPL44AXL 0.98 4.12E-05 1.70E-03 0.60
Gene pair 3 SLC19A14NREP 1.09 2.19E-03 1.43E-02 0.59
Gene pair 4 PUS14LTBP2 0.61 8.74E-03 3.39E-02 0.57
Gene pair 5 MCM24IFRD2 0.66 1.18E-02 3.89E-02 0.57
Gene pair 6 SLC19A14WWC2 1.20 9.92E-05 2.41E-03 0.56

Note: ROEs represent the relative expression ordering of gene pair (Ra4Rf);
β and P-value are the statistics calculated from the univariate Cox
regression model. β represents the risk coefficient of the REO for gene
pair (a, b), where β40 indicates that Ra4 Rb is a risk factor, otherwise a
protective factor; P-value represents the significance of the REO for gene
pair (a, b). All the P-values were adjusted using the Benjamini–Hochberg
procedure.
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Notably, besides the 36 samples with completed RFS after
5-FU-based therapy, there were other 148 stage II–III CRC samples
with gene expression data documented in TCGA. The RFS end
points of these samples were unavailable and the overall survival
confounded with complex therapy regimens and treatment
cycles,32 which was unsuitable for prognostic analyses. Never-
theless, we could predict all the 184 samples into 91 high-risk and
93 low-risk patients, respectively. Using the Wilcoxon rank-sum
test, we detected 9039 DEGs (FDRo5%) between the two groups,
which were significantly consistent with the corresponding
DEGs extracted from the GSE39582 and GSE14333 data sets,
with the concordance scores as high as 96.94% (binomial test,

P-valueo1.11E-16) and 96.86% (binomial test, P-valueo1.11E-16),
respectively. Based on the reproducibility, we could further classify
the CRC samples without completed RFS in TCGA into two groups
with the same distinct transcriptional characteristics correspond-
ing to the prognostics groups. Thus, we used all the 184 samples
for further analysis. This strategy enabled us to exploit the TCGA
multi-omics data to reveal the genomic and epigenetic landscapes
of the prognostic groups.
The 2588 DEGs between the prognostic groups, consistently

extracted from the GSE39582, GSE14333 and TCGA data sets
(Wilcoxon rank-sum test, FDRo10%), were significantly
enriched in 36 KEGG pathways (FDRo5%, hypergeometric test,

Figure 2. The performance of the 6-GPS for predicting the RFS of the CRC patients. The Kaplan–Meier curves of RFS for the CRC patients
treating with 5-FU-based therapy in the training data set (GSE39582) (a–c) and the validation data sets ((d) GSE14333 and (e) TCGA).
The Kaplan–Meier curves of RFS for (f) the CRC patients without 5-FU-based treatment. n, the number of samples.

Table 3. Univariate and multivariate Cox regression analysis for the GSE39582 data set

Characteristics Univariate analysis Multivariate analysis

HRa (95% CI) P-value HR (95% CI) P-value

6-GPS (low risk(ref)/high risk) 3.61 (2.20,5.95) 7.26E-08 3.05 (1.66,5.60) 3.36E-04
Tumor stage (II(ref )/III) 1.43 (0.83, 2.46) 2.00E-01 1.56 (0.78, 3.10) 2.09E-01
Gender (femal (ref )/male) 1.05 (0.67, 1.66) 8.30E-01 0.74 (0.42, 1.33) 3.16E-01
Age (⩽70 (ref )/470) 1.03 (0.62, 1.71) 9.00E-01 0.78 (0.40, 1.53) 4.73E-01
Tumor location (proximal (ref)/distal) 1.38 (0.83, 2.29) 2.10E-01 1.84 (0.93, 3.67) 8.16E-02
MMR status (pMMR (ref )/dMMR) 0.80 (0.29, 2.20) 6.70E-01 1.74 (0.49, 6.23) 3.94E-01
BRAF mutation (WT (ref )/M) 0.71 (0.17, 2.93) 6.40E-01 0.62 (0.073, 5.25) 6.61E-01
KRAS mutation (WT (ref )/M) 1.26 (0.78, 2.04) 3.40E-01 1.35 (0.73, 2.50) 3.44E-01

Abbreviations: dMMR, MMR-deficient; HR, hazard ratio; M, mutation; MMR, mismatch repair; pMMR, MMR-proficient; ref, reference group in calculation of HR;
WT, wild-type. Bold parts indicates the Cox regression analysis results for the 5-FU-based therapy prognostic gene pair signature.
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Figure 3. The performance of the 6-GPS for predicting 5-FU resistance for 58 cancer cell lines from the NCI-60 data. The heat map (a) and box
plot (b) of − log10 GI50 values of the 58 cell lines identified by the 6-GPS. Abbreviations: BR, breast; CNS, central nervous system; CO, colon;
LC, non-small cell lung; LE, leukemia; ME, melanoma; OV, ovarian; PR, prostate; RE, renal.

Figure 4. The copy number aberration regions and mutation genes characterizing the high- and low-risk patients, respectively. The
frequencies of (a) 23 amplification regions, (b) 45 deletion regions and (c) 24 mutation genes in the high- and low-risk groups, respectively.
The 24 mutation genes exhibited significantly higher frequencies in the low-risk group compared with the high-risk group (Fisher test,
P-valueo0.01). ***P-valueo0.00001, **P-valueo0.0001, *P-valueo0.001, +P-valueo0.05.
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Supplementary Table S2). Out of these pathways, 12 pathways
have been reported to be associated with 5-FU sensitivity,
including the pyrimidine metabolism pathway promoting 5-FU
catabolism,33 cell cycle and DNA repair pathways associated with
the activity of 5-FU34,35 (Supplementary Table S2).

Genomic characteristics of the prognostic groups
For the 184 stage II–III TCGA tumors with mRNA-seq profiles, 183,
143 and 166 samples had copy number alteration, somatic
mutation data and MSI information data, respectively. This
allowed us to further characterize the two prognostic groups
with genomic profiles. Notably, we should emphasize that the
multi-omics analysis was not used to validate the predictive value
but reveal the potential molecular mechanisms determining
prognoses of CRC patients treated with 5-FU-based chemotherapy.
Among the 68 chromosome regions with copy number

alternation in the 183 CRC samples, we found that 54 (79.41%)
chromosome regions had significantly higher variation frequen-
cies in the high-risk group than in the low-risk group (Fisher test,
FDRo5%, Figures 4a and b and Supplementary Table S3).
Especially, three regions, 20q12, 20q13.12 and 20q11.21, were
amplified in almost all the high-risk samples, with the variation

frequencies as high as 95.60, 95.60 and 93.41%, while their
amplification frequencies in the low-risk group were 43.48, 43.48
and 43.48%, respectively. The deletion frequency of 18q21.2 in the
high-risk group was also as high as 87.91% while the frequency
was only 39.13% in the low-risk group. It has been reported that
CRC patients with 20q13.12 amplification or 18q21.2 deletion still
had poor survival after receiving 5-FU-based therapy.36 Loss of
18q has been reported to be associated with an adverse response
to 5-FU-based adjuvant chemotherapy.37,38

We further analyzed the genomic events that could lead to
dysregulations of the 12 pathways associated with 5-FU sensitivity
(Supplementary Table S2) and the variation frequency of each
pathway among the high-risk samples. To this end, we calculated
the prevalence of copy number alterations for each of the
pathways in the high-risk samples, representing the number of
tumor samples in which at least one gene in the pathway had
copy number alternation (Supplementary Data 1). Within the
54 chromosome regions frequently altered in the 91 high-risk
samples identified from the TCGA data set, the expression levels of
1179 genes were positively correlated with DNA copy number
(Spearman correlation, FDRo5%). In 81.32% of cases, the
pyrimidine metabolism pathway included at least one of these
1179 genes, among which NT5C3A, TYMP and DPYD were altered

Figure 5. The multi-omic alterations of pathways in the high-risk group. Metabolites of 5-FU: FBAL, a-fluoro-b-alanine; FUrd, fluorouridine;
FUMP, fluorouridine monophosphate; FUDP, fluorouridine-5′-diphosphate; FUTP, fluorouridine triphosphate; FdUrd, fluorodeoxyuridine;
FdUMP, fluorodeoxyuridine monophosphate; FdUTP, fluorodeoxyuridine triphosphate; FdUDP, fluorodeoxyuridine-5′-diphosphate.
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in 79.12, 42.86 and 32.97% of the high-risk samples, respectively.
NT5C3A and TYMP were frequently deleted and underexpressed in
the high-risk patients, which might reduce the production of
active metabolites of 5-FU, FUMP and FdUMP,35 and thus decrease
the cytotoxicity of 5-FU (Figure 5). The amplification and
overexpression of DPYD, a pyrimidine catabolic enzyme as the
initial and rate-limiting factor in 5-FU catabolism, might contribute
to poor outcomes of CRC patients receiving 5-FU-based therapy.39

In addition, the top three pathways with the most frequent copy
number alternations were cell cycle (87.91%), PI3K–Akt signaling
pathway (86.81%) and Ras signaling pathway (85.71%) (Figure 5).
Many genes with copy number alterations in these pathways can

reduce 5-FU efficacy, including MYC,40 SMAD4,41,42 AKT,43 BCL2L144

and IKBKB45 (Figure 5 and Supplementary Table S4).
In addition, of the 1179 genes with frequent copy number

alterations in the high-risk group, 853 genes were mapped in the
human protein–protein interaction (PPI) network (see Materials
and methods). We further analyzed the PPI links between the 1179
and 82 genes involved in 5-FU transport, metabolism and other
downstream effects,34 denoted as 5-FU activity-related genes.
Among the 853 genes with copy number alterations, 10.67% (91)
had direct PPI links with at least one of the 82 5-FU activity-related
genes, which was significantly higher than the corresponding
frequency of 3.90% for the rest of 517 genes without frequent

Figure 6. The direct PPI links between the genes with frequent copy number alterations in the high-risk group and 5-FU activity-related genes.
5-FU activity-related genes: genes involved in 5-FU transport, metabolism and other downstream effects (such as DNA repair, apoptosis and
cell cycle regulation). The green nodes denoted 5-FU activity-related genes. The red/blue nodes denoted genes with amplification or deletion
in the high-risk group. The triangular nodes were the genes overlapped between the genes with frequent copy number alterations and 5-FU
activity-related genes.
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copy number alterations in the high-risk groups (Fisher exact
test, P-value = 3.44E–06). As shown in Figure 6, the hub-nodes
mainly involved in pyrimidine metabolism, folate metabolism,
p53 signaling pathway46 and DNA repair, which were associated
with 5-FU activity.
Next, we compared the mutation profiles between the two

prognostic groups. Impressively, among the 321 genes that
tended to have different mutation frequencies between the two
groups (Fisher test, P-valueo0.05), 320 had higher mutation
frequencies in the low-risk group (Supplementary Table S5 and
Figure 4c). It was unlikely to be observed by chance (binomial test,
P-valueo1.11E-16). Then, for the 68 low-risk samples, we
computed the prevalence of mutations (Supplementary Data 2)
in the 12 pathways with transcriptional alternations associated
with 5-FU sensitivity (Supplementary Table S2). The top three
pathways with the most frequent mutations of these 320 genes
were the ECM–receptor interaction (45.59%), focal adhesion
(44.12%) and PI3K–Akt signaling pathway (39.71%). Notably,
some genes functioning cell adhesion and migration, such as
LAMB1, ITGB4 and ITGA3, mutated in all the three pathways
(Supplementary Table S6). These three genes mutated in 10.29,
11.76 and 5.88% of the low-risk patients, respectively, which might
suppress cell adhesion and then decrease the recurrence risk of
CRC patients. It has been found that mutations of LAMB1,47 ITGB4
and ITGA348 were strongly associated with relapse and metastasis
in CRC patients.
In addition, the frequency of MSI-High in the low-risk group

(27.71%) was also significantly higher than that in the high-risk
group (12.05%) (Fisher test, P-value = 1.87E-02), confirming that
stage II–III of CRC patients with MSI-High tumors have a better
prognosis compared with patients with MSS/MSI-Low.49,50

Epigenomic characteristics of the prognostic groups
Among the 9039 DEGs (Wilcoxon rank-sum test, FDRo5%)
between the two risk groups in the 176 TCGA samples with
DNA methylation profiles, 1555 genes’ expression levels were
negatively correlated with their methylation levels (Spearman
correlation, FDRo5%). The 1555 DEGs were significantly enriched
in the PI3K–Akt, cell adhesion molecules and Rap1 signaling
pathway (FDRo5%, hypergeometric test; Supplementary Table
S7). It has been reported that activation of these pathways could
promote cell survival51,52 or inhibit apoptosis53 to confer 5-FU
resistance. PI3K–Akt and Rap1 signaling pathways also included
genes with frequent copy number altered (Figure 5), which
suggested that the dysregulation of these pathways might be
induced by both genomic and epigenomic alternations.

DISCUSSION
There is a compelling need to identify CRC patients who will
benefit from 5-FU-based adjuvant therapy. In this study, we firstly
identified 30 genes whose expression levels correlated with GI50
values of 5-FU and successfully validated their clinical relevance to
prognoses of CRC patients treated with 5-FU-based therapy. Then,
from these 30 genes, we extracted a prognostic signature based
on the within-sample ROEs of six gene pairs for stage II–III CRC
patients receiving 5-FU-based therapy. Recently, Guinney et al.54

have created a methodological gold standard for the taxonomy of
CRC and reported the gene expression-based consensus mole-
cular subtypes (CMS) of CRC, which include CMS1, CMS2, CMS3
and CMS4. We applied the Single Sample Predictor classifier
provided by the authors to classify the CRC patients receiving
5-FU-based therapy. We found that the high-risk patients tended
to be classified to CMS4 and the low-risk patients tended to be
labeled as CMS2 or CMS3(Supplementary Table S9). The results
confirmed that the CMS4 tumors have worse overall survival than
the CMS2 and CMS3 tumors.54 Notably, the association of CMS

subgroups with the chemotherapy efficacy is still unknown. The
consensual description of CRC heterogeneity could be used to
predefine patient subgroups, from which we could further identify
patients that benefit from specific chemotherapy. However,
the classifier reported by Guinney et al still requires data
normalization. Different form the CMS classifier, the REO-based
signature, which is largely free of experimental batch effect and
does not need data normalization, enables us to distinguish stage
II–III CRC patients who are more likely to benefit from 5-FU-based
therapy. The comparisons between the study reported by
Guinney et al and our work was displayed in the Supplementary
Table S10.
Notably, it would be more appropriate to filter out gene pairs

with unstable ordering in data sets produced by different
platforms with different detection biases.29,55 However, except
for the GSE39582 and GSE14333 data sets analyzed in this study,
no other CRC samples with definite 5-FU-based chemotherapy
data produced by other platforms were found. Many data sets of
CRC have been misused due to the unclear and incomplete data
annotation in public data sources.56 Additional clinical data sets
are needed to advance research into the robustness of REO-based
signature in different platforms. In addition, it can be expected
that REOs deduced from transcriptional abundance measured by
reverse transcriptase PCR (RT–PCR) tend to be robust against
batch effects existing in RT–PCR experiments.24 Thus, it is worth
developing RT–PCR kit to measure the REOs of the six gene pairs
for the clinical application of the REO-based signature. It is also
necessary to explore the specific applications of REO-based
signature such as evaluating the robustness of the assays in
paraffin-embedded specimens.
In summary, the REO-based signature, which is largely free of

experimental batch effect and does not need data normalization,
could distinguish stage II–III CRC patients who are more likely to
benefit from 5-FU-based therapy after surgery. The robustness
of the signature enables us to integrate the multi-omics
data documented in TCGA to characterize prognostic groups
comprehensively.

MATERIALS AND METHODS
Data acquisition and processing
Drug-sensitivity data and expression profiling data for the NCI-60 were
obtained from the NCI DTP (Table 1). Tissue samples were downloaded
from Gene Expression Omnibus (GEO) and TCGA (Table 1). When using the
REO-based signature to predict prognoses of patients or sensitivity of cell
lines in a one-by-one manner (at the individual level), we just used the
robust microarray average (RMA) to perform the background-adjust to
reduce the within-sample optical and nonspecific binding noise.57 In order
to select DEGs between two prognostic groups predicted by the REO-
based prognostic signature57 and performed the correlation analysis, data
sets generated from the Affymetrix platform were pre-processed using the
RMA with quantile normalization. Each probe-set ID was mapped to its
Entrez gene ID with the corresponding custom CDF files. If multiple probe-
sets were mapped to the same gene, the expression value for the gene
was defined as the arithmetic mean of the values of the multiple probe-
sets (on the log2 scale).
For data sets from TCGA, gene expression data of level 3 derived from

Illumina HiSeq 2000 RNA Sequencing Version 2 analysis, somatic mutation
data of level 2 derived from Illumina Genome Analyzer DNA Sequencing,
methylation data of level 3 derived from Illumina Infinium Human DNA
Methylation 450 platform were chosen and downloaded from TCGA portal.
Copy number data of level 4 derived from Genome-Wide Human SNP
Array 6.0 for TCGA samples analyzed by the GISTIC 2.0 algorithm58 were
downloaded from Firehose. Using the significant regions of gain or loss
identified by GISTIC 2.0, we assigned a discrete copy number alteration
status to each gene in each sample. For gene mutation data, only the non-
synonymous mutations were included and a discrete mutation profile
including 15 044 genes were generated. For DNA methylation profiles, we
focused on analyzing the 25 978 CpG sites located at the promoter regions
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of genes. The SVA package was used to remove batch effects and other
unwanted variation.59

Concordance scores
For DEGs from two independent data sets sharing k DEGs, of which s genes
had the same up- or downregulation directions, the concordance score
was calculated as s/k.
If k genes were found to both correlate with the GI50 values of 5-FU in

cell lines and the RFS of CRC patients treated with 5-FU-based
chemotherapy, among which s genes had the same signs positively
(or negatively) correlated with the GI50 values of 5-FU in cell lines and
correspondingly negatively (or positively) correlated with the RFS of CRC
patients, then the concordance score was calculated as s/k.
The probability of observing a concordance score (s/k) by chance can be

evaluated using the cumulative binomial distribution model as follows:

p ¼ 1 -
Xs - 1
i¼0

k
i

� �
peð Þi 1 - peð Þk - i

in which pe is the probability of one gene having the same dysregulation
direction in two gene lists by random chance (here, pe=0.5).

Correlation and survival analysis
The Spearman’s rank correlation analysis was used to evaluate the
correlation of genes expression levels with GI50 values of 5-FU for NCI-60
cell lines. The RFS was defined as the time from the date of initial surgical
resection to the date of relapse or last contact. Survival curves were
estimated using the Kaplan–Meier method and were compared using the
log-rank test. The univariate Cox proportional-hazards regression model
was used to evaluate the correlation of gene expression levels and REOs of
gene pairs with the RFS of CRC patients. The multivariate Cox proportional-
hazards regression model was used to evaluate the independent
prognostic value of the signature after adjusting for clinical factors
including tumor stage, age, gender tumor location, mismatch repair status
and gene mutation (BRAF and KRAS). P-values were adjusted using the
Benjamini and Hochberg procedure.60

Identification of 5-FU-based therapy prognostic gene pair
signature
All possible pairs were combined between every two candidate genes
correlated with both cells’ GI50 for 5-FU and patients’ prognoses. Let
Ga and Gb represent the expression levels of gene a and gene b,
respectively. For each gene pair (Ga and Gb), correlation between a specific
REO pattern (Ga4Gb or GaoGb) and RFS was performed by univariate
Cox regress analysis. Controlling the FDR at the 5% level, gene pairs having
correlation with survival were defined as Set1. Then, for a gene pair in Set1,
if its reversal REO (e.g. Ga4Gb→GaoGb) was associated with worse or
better survival, then we considered that the reversal REO in a cancer
sample voted for high- or low-risk, whereas the non-reversal REO in a
cancer sample voted for low or high risk. According to the REO pattern of
gene pairs from Set1, a sample was determined to be high risk if at least a
half of the REOs of the set of gene pairs within this sample voted for high
risk; otherwise, this sample was classified into the low-risk group. C-index
values were calculated in the training data set for each gene pair.61 All
gene pairs were sorted in descending order according to the C-index
values, which was defined as Set2. Finally, a forward selection procedure
was used to search a set of gene pairs that achieved the highest C-index.
We chose the gene pair with the highest C-index value from Set2 as a seed,
and added the next gene pair to the signature one at a time until the
C-index did not increase. A set of gene pairs with the highest C-index was
chosen as Set3, which was further defined as the GPS. Figure 1 describes
the flowchart.

Genomic and epigenomic analysis of the prognostic groups
Fisher exact test was used to assess different frequencies of mutation and
copy number aberrations between groups. Spearman rank correlation
analysis was used to evaluate the correlation between copy number,
or methylation level, and expression changes. The Wilcoxon rank-sum test
was used to detect DEGs between two groups of samples.

Human PPI data
The PPI data were downloaded from HPRD,62 IntAct,63 MIPS,64 MINT,65

DIP,66 BIND,67 KEGG68 and neighboring reactions.69 We compiled an
integrated interaction network of 142 583 distinct interactions involving
13 693 human proteins.70 The Fisher exact test was used to test whether
the direct PPI links between two gene sets were significant more that what
expected by random chance.
In the network, 82 genes involved in 5-FU transport, metabolism and

other downstream effects, denoted as 5-FU activity-related genes, which
were collected from a previous study34 (Supplementary Table S8).

Functional enrichment analysis
The functional categories for enrichment analysis were downloaded from
KEGG.68 The hypergeometric distribution model was used to test whether
a set of genes observed in a functional term was significantly more than
what expected by random chance. All statistical analyses were performed
using the R 3.12.
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