Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PIM1 induces cellular senescence through phosphorylation of UHRF1 at Ser311

Abstract

PIM1 is a proto-oncogene, encoding a serine/threonine protein kinase that regulates cell proliferation, survival, differentiation and apoptosis. Previous reports suggest that overexpression of PIM1 can induce cellular senescence. However, the molecular mechanism underlying this process is not fully understood. Here we report that UHRF1 is a novel substrate of PIM1 kinase, which could be phosphorylated at Ser311 and therefore promoted to degradation. Our data demonstrates that PIM1 destabilizes UHRF1, leading to DNA hypomethylation, which consequently results in genomic instability, increased p16 expression and subsequent induction of cellular senescence. Taken together, our results suggest that down-regulation of UHRF1 is an important mechanism of PIM1-mediated cellular senescence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hayflick L . The Limite'd in vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 1965; 37: 614–636.

    Article  CAS  PubMed  Google Scholar 

  2. Di Leonardo A, Linke SP, Clarkin K, Wahl GM . DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 1994; 8: 2540–2551.

    Article  CAS  PubMed  Google Scholar 

  3. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  4. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  5. Campisi J, d'Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  6. Wei S, Wei S, Sedivy JM . Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Cancer Res 1999; 59: 1539–1543.

    CAS  PubMed  Google Scholar 

  7. Reimann M, Lee S, Loddenkemper C, Dorr JR, Tabor V, Aichele P et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 2010; 17: 262–272.

    Article  CAS  PubMed  Google Scholar 

  8. Katakura Y, Nakata E, Miura T, Shirahata S . Transforming growth factor beta triggers two independent-senescence programs in cancer cells. Biochem Biophys Res Commun 1999; 255: 110–115.

    Article  CAS  PubMed  Google Scholar 

  9. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    Article  CAS  PubMed  Google Scholar 

  10. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  PubMed  Google Scholar 

  11. Grandori C, Wu KJ, Fernandez P, Ngouenet C, Grim J, Clurman BE et al. Werner syndrome protein limits MYC-induced cellular senescence. Genes Dev 2003; 17: 1569–1574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gorgoulis VG, Halazonetis TD . Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 2010; 22: 816–827.

    Article  CAS  PubMed  Google Scholar 

  13. Collado M, Serrano M . Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kia SK, Gorski MM, Giannakopoulos S, Verrijzer CP . SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus. Mol Cell Biol 2008; 28: 3457–3464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barradas M, Anderton E, Acosta JC, Li S, Banito A, Rodriguez-Niedenfuhr M et al. Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS. Genes Dev 2009; 23: 1177–1182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 1984; 37: 141–150.

    Article  CAS  PubMed  Google Scholar 

  18. Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 2005; 280: 6130–6137.

    Article  CAS  PubMed  Google Scholar 

  19. Hoover D, Friedmann M, Reeves R, Magnuson NS . Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J Biol Chem 1991; 266: 14018–14023.

    CAS  PubMed  Google Scholar 

  20. Selten G, Cuypers HT, Boelens W, Robanus-Maandag E, Verbeek J, Domen J et al. The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell 1986; 46: 603–611.

    Article  CAS  PubMed  Google Scholar 

  21. Saris CJ, Domen J, Berns A . The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 1991; 10: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L et al. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2001; 2: 167–179.

    Article  CAS  PubMed  Google Scholar 

  23. Narlik-Grassow M, Blanco-Aparicio C, Carnero A . The PIM family of serine/threonine kinases in cancer. Med Res Rev 2014; 34: 136–159.

    Article  CAS  PubMed  Google Scholar 

  24. Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y, Perez M, Munoz-Galvan S, Canamero M et al. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS ONE 2013; 8: e60277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24: 6104–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breuer M, Wientjens E, Verbeek S, Slebos R, Berns A . Carcinogen-induced lymphomagenesis in pim-1 transgenic mice: dose dependence and involvement of myc and ras. Cancer Res 1991; 51: 958–963.

    CAS  PubMed  Google Scholar 

  27. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673–682.

    Article  CAS  PubMed  Google Scholar 

  28. Acton D, Domen J, Jacobs H, Vlaar M, Korsmeyer S, Berns A . Collaboration of pim-1 and bcl-2 in lymphomagenesis. Curr Top Microbiol Immunol 1992; 182: 293–298.

    CAS  PubMed  Google Scholar 

  29. Schmidt T, Karsunky H, Gau E, Zevnik B, Elsasser HP, Moroy T . Zinc finger protein GFI-1 has low oncogenic potential but cooperates strongly with pim and myc genes in T-cell lymphomagenesis. Oncogene 1998; 17: 2661–2667.

    Article  CAS  PubMed  Google Scholar 

  30. Feldman BJ, Reid TR, Cleary ML . Pim1 cooperates with E2a-Pbx1 to facilitate the progression of thymic lymphomas in transgenic mice. Oncogene 1997; 15: 2735–2742.

    Article  CAS  PubMed  Google Scholar 

  31. Hogan C, Hutchison C, Marcar L, Milne D, Saville M, Goodlad J et al. Elevated levels of oncogenic protein kinase Pim-1 induce the p53 pathway in cultured cells and correlate with increased Mdm2 in mantle cell lymphoma. J Biol Chem 2008; 283: 18012–18023.

    Article  CAS  PubMed  Google Scholar 

  32. Zemskova M, Lilly MB, Lin YW, Song JH, Kraft AS . p53-dependent induction of prostate cancer cell senescence by the PIM1 protein kinase. Mol Cancer Res 2010; 8: 1126–1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jin B, Wang Y, Wu CL, Liu KY, Chen H, Mao ZB . PIM-1 modulates cellular senescence and links IL-6 signaling to heterochromatin formation. Aging cell 2014; 13: 879–889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bullock AN, Debreczeni J, Amos AL, Knapp S, Turk BE . Structure and substrate specificity of the Pim-1 kinase. J Biol Chem 2005; 280: 41675–41682.

    Article  CAS  PubMed  Google Scholar 

  35. Bronner C, Achour M, Arima Y, Chataigneau T, Saya H, Schini-Kerth VB . The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther 2007; 115: 419–434.

    Article  CAS  PubMed  Google Scholar 

  36. Tauber M, Fischle W . Conserved linker regions and their regulation determine multiple chromatin-binding modes of UHRF1. Nucleus 2015; 6: 123–132.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K et al. Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 2013; 502: 249–253.

    Article  CAS  PubMed  Google Scholar 

  38. Du J, Johnson LM, Jacobsen SE, Patel DJ . DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol 2015; 16: 519–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nady N, Lemak A, Walker JR, Avvakumov GV, Kareta MS, Achour M et al. Recognition of multivalent histone states associated with heterochromatin by UHRF1 protein. J Biol Chem 2011; 286: 24300–24311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cheng J, Yang Y, Fang J, Xiao J, Zhu T, Chen F et al. Structural insight into coordinated recognition of trimethylated histone H3 lysine 9 (H3K9me3) by the plant homeodomain (PHD) and tandem tudor domain (TTD) of UHRF1 (ubiquitin-like, containing PHD and RING finger domains, 1) protein. J Biol Chem 2013; 288: 1329–1339.

    Article  CAS  PubMed  Google Scholar 

  41. Hu L, Li Z, Wang P, Lin Y, Xu Y . Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2. Cell Research 2011; 21: 1374–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang C, Shen J, Yang Z, Chen P, Zhao B, Hu W et al. Structural basis for site-specific reading of unmodified R2 of histone H3 tail by UHRF1 PHD finger. Cell Research 2011; 21: 1379–1382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rothbart SB, Dickson BM, Ong MS, Krajewski K, Houliston S, Kireev DB et al. Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 2013; 27: 1288–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gelato KA, Tauber M, Ong MS, Winter S, Hiragami-Hamada K, Sindlinger J et al. Accessibility of different histone H3-binding domains of UHRF1 is allosterically regulated by phosphatidylinositol 5-phosphate. Mol Cell 2014; 54: 905–919.

    Article  CAS  PubMed  Google Scholar 

  45. Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 2008; 455: 822–825.

    Article  CAS  PubMed  Google Scholar 

  46. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE . UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 2007; 317: 1760–1764.

    Article  CAS  PubMed  Google Scholar 

  47. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA et al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 2007; 450: 908–912.

    Article  CAS  PubMed  Google Scholar 

  48. Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M . Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 2008; 455: 818–821.

    Article  CAS  PubMed  Google Scholar 

  49. Berkyurek AC, Suetake I, Arita K, Takeshita K, Nakagawa A, Shirakawa M et al. The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger-associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J Biol Chem 2014; 289: 379–386.

    Article  CAS  PubMed  Google Scholar 

  50. Bashtrykov P, Jankevicius G, Jurkowska RZ, Ragozin S, Jeltsch A . The UHRF1 protein stimulates the activity and specificity of the maintenance DNA methyltransferase DNMT1 by an allosteric mechanism. J Biol Chem 2014; 289: 4106–4115.

    Article  CAS  PubMed  Google Scholar 

  51. Achour M, Jacq X, Ronde P, Alhosin M, Charlot C, Chataigneau T et al. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene 2008; 27: 2187–2197.

    Article  CAS  PubMed  Google Scholar 

  52. Karagianni P, Amazit L, Qin J, Wong J . ICBP90, a novel methyl K9 H3 binding protein linking protein ubiquitination with heterochromatin formation. Mol Cell Biol 2008; 28: 705–717.

    Article  CAS  PubMed  Google Scholar 

  53. Citterio E, Papait R, Nicassio F, Vecchi M, Gomiero P, Mantovani R et al. Np95 is a histone-binding protein endowed with ubiquitin ligase activity. Mol Cell Biol 2004; 24: 2526–2535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sadler KC, Krahn KN, Gaur NA, Ukomadu C . Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci USA 2007; 104: 1570–1575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bonapace IM, Latella L, Papait R, Nicassio F, Sacco A, Muto M et al. Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol 2002; 157: 909–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arima Y, Hirota T, Bronner C, Mousli M, Fujiwara T, Niwa S et al. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells 2004; 9: 131–142.

    Article  CAS  PubMed  Google Scholar 

  57. Uemura T, Kubo E, Kanari Y, Ikemura T, Tatsumi K, Muto M . Temporal and spatial localization of novel nuclear protein NP95 in mitotic and meiotic cells. Cell Struct Funct 2000; 25: 149–159.

    Article  CAS  PubMed  Google Scholar 

  58. Miura M, Watanabe H, Sasaki T, Tatsumi K, Muto M . Dynamic changes in subnuclear NP95 location during the cell cycle and its spatial relationship with DNA replication foci. Exp Cell Res 2001; 263: 202–208.

    Article  CAS  PubMed  Google Scholar 

  59. Mousli M, Hopfner R, Abbady AQ, Monte D, Jeanblanc M, Oudet P et al. ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells. Br J Cancer 2003; 89: 120–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang Z, Xing F, Bronner C, Teng Z, Guo Z . ICBP90 mediates the ERK1/2 signaling to regulate the proliferation of Jurkat T cells. Cell Immunol 2009; 257: 80–87.

    Article  CAS  PubMed  Google Scholar 

  61. Trotzier MA, Bronner C, Bathami K, Mathieu E, Abbady AQ, Jeanblanc M et al. Phosphorylation of ICBP90 by protein kinase A enhances topoisomerase IIalpha expression. Biochem Biophys Res Commun 2004; 319: 590–595.

    Article  CAS  PubMed  Google Scholar 

  62. Chu J, Loughlin EA, Gaur NA, SenBanerjee S, Jacob V, Monson C et al. UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis. Mol Biol Cell 2012; 23: 59–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen H, Ma H, Inuzuka H, Diao J, Lan F, Shi YG et al. DNA damage regulates UHRF1 stability via the SCF(beta-TrCP) E3 ligase. Mol Cell Biol 2013; 33: 1139–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hayflick L, Moorhead PS . The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25: 585–621.

    Article  CAS  PubMed  Google Scholar 

  65. Tang Z, Zhang Z, Zheng Y, Corbley MJ, Tong T . Cell aging of human diploid fibroblasts is associated with changes in responsiveness to epidermal growth factor and changes in HER-2 expression. Mech Ageing Dev 1994; 73: 57–67.

    Article  CAS  PubMed  Google Scholar 

  66. Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS . Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 2005; 3: 170–181.

    Article  PubMed  Google Scholar 

  67. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell 1998; 2: 417–425.

    Article  CAS  PubMed  Google Scholar 

  68. Tu Z, Aird KM, Bitler BG, Nicodemus JP, Beeharry N, Xia B et al. Oncogenic RAS regulates BRIP1 expression to induce dissociation of BRCA1 from chromatin, inhibit DNA repair, and promote senescence. Dev Cell 2011; 21: 1077–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eden A, Gaudet F, Waghmare A, Jaenisch R . Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300: 455.

    Article  CAS  PubMed  Google Scholar 

  70. Fraga MF, Esteller M . Epigenetics and aging: the targets and the marks. Trends Genet 2007; 23: 413–418.

    Article  CAS  PubMed  Google Scholar 

  71. Klutstein M, Nejman D, Greenfield R, Cedar H . DNA methylation in cancer and aging. Cancer Res 2016; 76: 3446–3450.

    Article  CAS  PubMed  Google Scholar 

  72. Holliday R . Strong effects of 5-azacytidine on the in vitro lifespan of human diploid fibroblasts. Exp Cell Res 1986; 166: 543–552.

    Article  CAS  PubMed  Google Scholar 

  73. Vogt M, Haggblom C, Yeargin J, Christiansen-Weber T, Haas M . Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differ 1998; 9: 139–146.

    CAS  PubMed  Google Scholar 

  74. Unoki M, Nishidate T, Nakamura Y . ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene 2004; 23: 7601–7610.

    Article  CAS  PubMed  Google Scholar 

  75. Nawijn MC, Alendar A, Berns A . For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011; 11: 23–34.

    Article  CAS  PubMed  Google Scholar 

  76. Arita K, Isogai S, Oda T, Unoki M, Sugita K, Sekiyama N et al. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci USA 2012; 109: 12950–12955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fang J, Cheng J, Wang J, Zhang Q, Liu M, Gong R et al. Hemi-methylated DNA opens a closed conformation of UHRF1 to facilitate its histone recognition. Nat Commun 2016; 7: 11197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Liu X, Gao Q, Li P, Zhao Q, Zhang J, Li J et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat Commun 2013; 4: 1563.

    Article  CAS  PubMed  Google Scholar 

  79. Tittle RK, Sze R, Ng A, Nuckels RJ, Swartz ME, Anderson RM et al. Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 2011; 350: 50–63.

    Article  CAS  PubMed  Google Scholar 

  80. Du Z, Song J, Wang Y, Zhao Y, Guda K, Yang S et al. DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination. Sci Signal 2010; 3: ra80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Qin W, Leonhardt H, Spada F . Usp7 and Uhrf1 control ubiquitination and stability of the maintenance DNA methyltransferase Dnmt1. J Cell Biochem 2011; 112: 439–444.

    Article  CAS  PubMed  Google Scholar 

  82. Mudbhary R, Hoshida Y, Chernyavskaya Y, Jacob V, Villanueva A, Fiel MI et al. UHRF1 overexpression drives DNA hypomethylation and hepatocellular carcinoma. Cancer Cell 2014; 25: 196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jia Y, Li P, Fang L, Zhu H, Xu L, Cheng H et al. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov 2016; 2: 16007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. von Meyenn F, Iurlaro M, Habibi E, Liu NQ, Salehzadeh-Yazdi A, Santos F et al. Impairment of DNA methylation maintenance is the main cause of global demethylation in naive embryonic stem cells. Mol Cell 2016; 62: 848–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ramesh V, Bayam E, Cernilogar FM, Bonapace IM, Schulze M, Riemenschneider MJ et al. Loss of Uhrf1 in neural stem cells leads to activation of retroviral elements and delayed neurodegeneration. Genes Dev 2016; 30: 2199–2212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhao J, Chen X, Song G, Zhang J, Liu H, Liu X . Uhrf1 controls the self-renewal versus differentiation of hematopoietic stem cells by epigenetically regulating the cell-division modes. Proc Natl Acad Sci USA 2016; 114: E142–E151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Harrison JS, Cornett EM, Goldfarb D, DaRosa PA, Li ZM, Yan F et al. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1. eLife 2016; 5: pii: e17101.

    Article  Google Scholar 

  88. McClay JL, Aberg KA, Clark SL, Nerella S, Kumar G, Xie LY et al. A methylome-wide study of aging using massively parallel sequencing of the methyl-CpG-enriched genomic fraction from blood in over 700 subjects. Hum Mol Genet 2014; 23: 1175–1185.

    Article  CAS  PubMed  Google Scholar 

  89. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA 2012; 109: 10522–10527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Johansson A, Enroth S, Gyllensten U . Continuous aging of the human DNA methylome throughout the human lifespan. PLoS ONE 2013; 8: e67378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weller EM, Poot M, Hoehn H . Induction of replicative senescence by 5-azacytidine: fundamental cell kinetic differences between human diploid fibroblasts and NIH-3T3 cells. Cell Prolif 1993; 26: 45–54.

    Article  CAS  PubMed  Google Scholar 

  92. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. Tumour biology: senescence in premalignant tumours. Nature 2005; 436: 642.

    Article  CAS  PubMed  Google Scholar 

  94. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 2006; 95: 496–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    Article  CAS  PubMed  Google Scholar 

  96. O'Sullivan J, Risques RA, Mandelson MT, Chen L, Brentnall TA, Bronner MP et al. Telomere length in the colon declines with age: a relation to colorectal cancer? Cancer Epidemiol Biomarkers Prev 2006; 15: 573–577.

    Article  CAS  PubMed  Google Scholar 

  97. Jass JR . Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology 2007; 50: 113–130.

    Article  CAS  PubMed  Google Scholar 

  98. Zhuo de X, Niu XH, Chen YC, Xin DQ, Guo YL, Mao ZB . Vitamin D3 up-regulated protein 1(VDUP1) is regulated by FOXO3A and miR-17-5p at the transcriptional and post-transcriptional levels, respectively, in senescent fibroblasts. J Biol Chem 2010; 285: 31491–31501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Programs of China (Grant number 2013CB530801) and the Natural Science Foundation of China (Grant number 81471406 and Grant number 81541066). This work was supported by the National Basic Research Programs of China (Grant Number 2013CB530801) and the National Natural Science Foundation of China (Grant Number 81471406, 81641183 and 81541066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Yu or Z Mao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Liu, K., Yang, J. et al. PIM1 induces cellular senescence through phosphorylation of UHRF1 at Ser311. Oncogene 36, 4828–4842 (2017). https://doi.org/10.1038/onc.2017.96

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.96

This article is cited by

Search

Quick links