Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Post-translational modification of HINT1 mediates activation of MITF transcriptional activity in human melanoma cells

Abstract

Microphthalmia transcription factor (MITF) is a basic helix-loop-helix leucine zipper (bHLH-Zip) DNA-binding protein. This transcription factor plays a crucial role in the physiological and pathological functions of distinct cell types. MITF transcriptional activity is inhibited by the histidine triad nucleotide-binding protein 1 (HINT1) through direct binding. We previously reported that this association is disrupted by the binding of the second messenger Ap4A to HINT1. Ap4A is mainly produced in the mammalian cells by S207-phosphorylated Lysyl-tRNA synthetase. In this study, we found first that HINT1 was subjected to K21 acetylation and Y109 phosphorylation in activated mast cells, together with the Ap4A-triggered HINT1 dissociation from MITF. Mutational analysis confirmed that these modifications promote MITF transcriptional and oncogenic activity in melanoma cell lines, derived from human melanoma patients. Thus, we provided here an example that manipulation of the LysRS-Ap4A-HINT1-MITF signalling pathway in melanoma through post-translational modifications of HINT1 can affect the activity of the melanoma oncogene MITF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hemesath TJ, Steingrimsson E, McGill G, Hansen MJ, Vaught J, Hodgkinson CA et al. microphthalmia, a critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev 1994; 8: 2770–2780.

    Article  CAS  PubMed  Google Scholar 

  2. Razin E, Zhang ZC, Nechushtan H, Frenkel S, Lee YN, Arudchandran R et al. Suppression of microphthalmia transcriptional activity by its association with protein kinase C-interacting protein 1 in mast cells. J Biol Chem 1999; 274: 34272–34276.

    Article  CAS  PubMed  Google Scholar 

  3. Lee YN, Nechushtan H, Figov N, Razin E . The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FcepsilonRI-activated mast cells. Immunity 2004; 20: 145–151.

    Article  CAS  PubMed  Google Scholar 

  4. Nechushtan H, Razin E . The function of MITF and associated proteins in mast cells. Mol Immunol 2002; 38: 1177–1180.

    Article  CAS  PubMed  Google Scholar 

  5. Sonnenblick A, Levy C, Razin E . Immunological trigger of mast cells by monomeric IgE: effect on microphthalmia transcription factor, STAT3 network of interactions. J Immunol 2005; 175: 1450–1455.

    Article  CAS  PubMed  Google Scholar 

  6. Carmi-Levy I, Yannay-Cohen N, Kay G, Razin E, Nechushtan H . Diadenosine tetraphosphate hydrolase is part of the transcriptional regulation network in immunologically activated mast cells. Mol Cell Biol 2008; 28: 5777–5784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Randerath K, Janeway CM, Stephenson ML, Zamecnik PC . Isolation and characterization of dinucleoside tetra- and tri-phosphates formed in the presence of lysyl-sRNA synthetase. Biochem Biophys Res Commun 1966; 24: 98–105.

    Article  CAS  PubMed  Google Scholar 

  8. Yang DC, Garcia JV, Johnson YD, Wahab S . Multienzyme complexes of mammalian aminoacyl-tRNA synthetases. Curr Top Cell Regul 1985; 26: 325–335.

    Article  CAS  PubMed  Google Scholar 

  9. Yannay-Cohen N, Carmi-Levy I, Kay G, Yang CM, Han JM, Kemeny DM et al. LysRS serves as a key signaling molecule in the immune response by regulating gene expression. Mol Cell 2009; 34: 603–611.

    Article  CAS  PubMed  Google Scholar 

  10. Genovese G, Ghosh P, Li H, Rettino A, Sioletic S, Cittadini A et al. The tumor suppressor HINT1 regulates MITF and beta-catenin transcriptional activity in melanoma cells. Cell Cycle 2012; 11: 2206–2215.

    Article  CAS  PubMed  Google Scholar 

  11. Tang T, Eldabaje R, Yang L . Current status of biological therapies for the treatment of metastatic melanoma. Anticancer Res 2016; 36: 3229–3241.

    Article  CAS  PubMed  Google Scholar 

  12. Miller AJ, Mihm MC Jr . Melanoma. N Engl J Med 2006; 355: 51–65.

    Article  CAS  PubMed  Google Scholar 

  13. Wellbrock C, Arozarena I . Microphthalmia-associated transcription factor in melanoma development and MAP-kinase pathway targeted therapy. Pigment Cell Melanoma Res 2015; 28: 390–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gray-Schopfer V, Wellbrock C, Marais R . Melanoma biology and new targeted therapy. Nature 2007; 445: 851–857.

    Article  CAS  PubMed  Google Scholar 

  15. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    CAS  PubMed  Google Scholar 

  16. Lee YN, Razin E . Nonconventional involvement of LysRS in the molecular mechanism of USF2 transcriptional activity in FcepsilonRI-activated mast cells. Mol Cell Biol 2005; 25: 8904–8912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ofir-Birin Y, Fang P, Bennett SP, Zhang HM, Wang J, Rachmin I et al. Structural switch of lysyl-tRNA synthetase between translation and transcription. Mol Cell 2013; 49: 30–42.

    Article  CAS  PubMed  Google Scholar 

  18. Carmi-Levy I, Motzik A, Ofir-Birin Y, Yagil Z, Yang CM, Kemeny DM et al. Importin beta plays an essential role in the regulation of the LysRS-Ap(4)A pathway in immunologically activated mast cells. Mol Cell Biol 2011; 31: 2111–2121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zuk K, Peczek L, Stec-Michalska K, Medrek M, Nawrot B . Family history of gastric cancer correlates with decreased expression of HINT1 tumor suppressor gene in gastric mucosa of dyspeptic patients. Oncol Lett 2012; 3: 219–223.

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, Wei X, Su X, Qiao F, Xu Z, Gu D et al. Clinical significance of expression of Hint1 and potential epigenetic mechanism in gastric cancer. Int J Oncol 2011; 38: 1557–1564.

    CAS  PubMed  Google Scholar 

  21. Li H, Zhang Y, Su T, Santella RM, Weinstein IB . Hint1 is a haplo-insufficient tumor suppressor in mice. Oncogene 2006; 25: 713–721.

    Article  CAS  PubMed  Google Scholar 

  22. Swarbrick JD, Buyya S, Gunawardana D, Gayler KR, McLennan AG, Gooley PR . Structure and substrate-binding mechanism of human Ap4A hydrolase. J Biol Chem 2005; 280: 8471–8481.

    Article  CAS  PubMed  Google Scholar 

  23. Hori T, Asakawa S, Itoh Y, Shimizu N, Mizuno S . Wpkci, encoding an altered form of PKCI, is conserved widely on the avian W chromosome and expressed in early female embryos: implication of its role in female sex determination. Mol Biol Cell 2000; 11: 3645–3660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zimon M, Baets J, Almeida-Souza L, De Vriendt E, Nikodinovic J, Parman Y et al. Loss-of-function mutations in HINT1 cause axonal neuropathy with neuromyotonia. Nat Genet 2012; 44: 1080–1083.

    Article  CAS  PubMed  Google Scholar 

  25. Aminkeng F . HINT1 mutations define a novel disease entity—autosomal recessive axonal neuropathy with neuromyotonia. Clin Genet 2013; 83: 31–32.

    Article  CAS  PubMed  Google Scholar 

  26. Jackson KJ, Chen Q, Chen J, Aggen SH, Kendler KS, Chen X . Association of the histidine-triad nucleotide-binding protein-1 (HINT1) gene variants with nicotine dependence. Pharmacogenomics J 2011; 11: 251–257.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Q, Wang X, O'Neill FA, Walsh D, Kendler KS, Chen X . Is the histidine triad nucleotide-binding protein 1 (HINT1) gene a candidate for schizophrenia? Schizophr Res 2008; 106: 200–207.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Su T, Suzui M, Wang L, Lin CS, Xing WQ, Weinstein IB . Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis. Proc Natl Acad Sci USA 2003; 100: 7824–7829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuan BZ, Jefferson AM, Popescu NC, Reynolds SH . Aberrant gene expression in human non small cell lung carcinoma cells exposed to demethylating agent 5-aza-2'-deoxycytidine. Neoplasia 2004; 6: 412–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Balajee AS, Su T, Cen B, Hei TK, Weinstein IB . The HINT1 tumor suppressor regulates both gamma-H2AX and ATM in response to DNA damage. J Cell Biol 2008; 183: 253–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weiske J, Huber O . The histidine triad protein Hint1 triggers apoptosis independent of its enzymatic activity. J Biol Chem 2006; 281: 27356–27366.

    Article  CAS  PubMed  Google Scholar 

  32. Levy C, Khaled M, Fisher DE . MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 2006; 12: 406–414.

    Article  CAS  PubMed  Google Scholar 

  33. Garraway LA, Sellers WR . Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 2006; 6: 593–602.

    Article  CAS  PubMed  Google Scholar 

  34. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 2013; 504: 138–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480: 94–98.

    Article  CAS  PubMed  Google Scholar 

  36. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011; 480: 99–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dolot R, Kaczmarek R, Seda A, Krakowiak A, Baraniak J, Nawrot B . Crystallographic studies of the complex of human HINT1 protein with a non-hydrolyzable analog of Ap4A. Int J Biol Macromol 2016; 87: 62–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof Norman Grover from the Hebrew University for conducting the statistical analysis. Patient-derived cutaneous metastatic melanoma cells (line TC-2514) were kindly provided by Dr John Wunderlich (Surgery Branch National Cancer Institute). This work was supported in part by grants from the National Institute of Health GM100136 and American Asthma Foundation AAF15-0080 to MG, and National Research Foundation of Singapore (Hebrew University of Jerusalem—Campus for Research Excellence and Technological Enterprise) and Israel Science Foundation to ER and the Israel Cancer Association, Boca Grove Fellowship Fund to ER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Razin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motzik, A., Amir, E., Erlich, T. et al. Post-translational modification of HINT1 mediates activation of MITF transcriptional activity in human melanoma cells. Oncogene 36, 4732–4738 (2017). https://doi.org/10.1038/onc.2017.81

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.81

This article is cited by

Search

Quick links