Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles

Abstract

Here we show that miR-21, a microRNA known for its oncogenic activity, is also essential for mediating immune responses against tumor. Knockout of miR-21 in mice slowed the proliferation of both CD4+ and CD8+ cells, reduced their cytokine production and accelerated the grafted tumor growth. Further investigations indicated that miR-21 could activate CD4+ and CD8+ T cells via the PTEN/Akt pathway in response to stimulations. Taken together, these data suggest the key functions of miR-21 in mediating anti-tumor immune response and thereby uncover a bi-directional role of this traditionally known ‘oncomiR’ in tumorigenesis. Our study may provide new insights for the design of cancer therapies targeting microRNAs, with an emphasis on the dynamic and possibly unexpected role of these molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhang N, Bevan MJ . CD8(+) T cells: foot soldiers of the immune system. Immunity 2011; 35: 161–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mahasa KJ, Ouifki R, Eladdadi A, Pillis L . Mathematical model of tumor-immune surveillance. J Theor Biol 2016; 404: 312–330.

    Article  CAS  PubMed  Google Scholar 

  3. Dunn GP, Old LJ, Schreiber RD . The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137–148.

    Article  CAS  PubMed  Google Scholar 

  4. Mellman I, Coukos G, Dranoff G . Cancer immunotherapy comes of age. Nature 2011; 480: 480–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014; 515: 577–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T . Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14: 135–146.

    Article  CAS  PubMed  Google Scholar 

  7. Chakraborty AK, Weiss A . Insights into the initiation of TCR signaling. Nat Immunol 2014; 15: 798–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim EH, Suresh M . Role of PI3K/Akt signaling in memory CD8 T cell differentiation. Front Immunol 2013; 4: 20.

    PubMed  PubMed Central  Google Scholar 

  9. Blanco B, Herrero-Sanchez C, Rodriguez-Serrano C, Sanchez-Barba M, Del Canizo MC . Comparative effect of two pan-class I PI3K inhibitors used as anticancer drugs on human T cell function. Int Immunopharmacol 2015; 28: 675–685.

    Article  CAS  PubMed  Google Scholar 

  10. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY . miR-21-mediated tumor growth. Oncogene 2007; 26: 2799–2803.

    Article  CAS  PubMed  Google Scholar 

  11. Pfeffer SR, Yang CH, Pfeffer LM . The role of miR-21 in cancer. Drug Dev Res 2015; 76: 270–277.

    Article  CAS  PubMed  Google Scholar 

  12. Yung BC, Li J, Zhang M, Cheng X, Li H, Yung EM et al. Lipid nanoparticles composed of quaternary amine-tertiary amine cationic lipid combination (QTsome) for therapeutic delivery of antimiR-21 for lung cancer. Mol Pharmaceutics 2016; 13: 653–662.

    Article  CAS  Google Scholar 

  13. Gao S, Tian H, Guo Y, Li Y, Guo Z, Zhu X et al. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomater 2015; 25: 184–193.

    Article  CAS  PubMed  Google Scholar 

  14. Ma X, Kumar M, Choudhury SN, Becker Buscaglia LE, Barker JR, Kanakamedala K et al. Loss of the miR-21 allele elevates the expression of its target genes and reduces tumorigenesis. Proc Natl Acad Sci USA 2011; 108: 10144–10149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu YR, Qi HJ, Deng DF, Luo YY, Yang SL . MicroRNA-21 promotes cell proliferation, migration, and resistance to apoptosis through PTEN/PI3K/AKT signaling pathway in esophageal cancer. Tumour Biol 2016; 37: 12061–12070.

    Article  CAS  PubMed  Google Scholar 

  16. Echevarria-Vargas IM, Valiyeva F, Vivas-Mejia PE . Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PloS ONE 2014; 9: e97094.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Locke FL, Zha YY, Zheng Y, Driessens G, Gajewski TF . Conditional deletion of PTEN in peripheral T cells augments TCR-mediated activation but does not abrogate CD28 dependency or prevent anergy induction. J Immunol 2013; 191: 1677–1685.

    Article  CAS  PubMed  Google Scholar 

  18. Soond DR, Garcon F, Patton DT, Rolf J, Turner M, Scudamore C et al. Pten loss in CD4 T cells enhances their helper function but does not lead to autoimmunity or lymphoma. J Immunol 2012; 188: 5935–5943.

    Article  CAS  PubMed  Google Scholar 

  19. Wu H, Neilson JR, Kumar P, Manocha M, Shankar P, Sharp PA et al. miRNA profiling of naive, effector and memory CD8 T cells. PloS ONE 2007; 2: e1020.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol 2010; 184: 6773–6781.

    Article  CAS  PubMed  Google Scholar 

  21. Teteloshvili N, Smigielska-Czepiel K, Kroesen BJ, Brouwer E, Kluiver J, Boots AM et al. T-cell Activation Induces Dynamic Changes in miRNA Expression Patterns in CD4 and CD8 T-cell Subsets. MicroRNA 2015; 4: 117–122.

    Article  CAS  PubMed  Google Scholar 

  22. Tveita AA, Schjesvold F, Haabeth OA, Fauskanger M, Bogen B . Tumors escape CD4+ T-cell-mediated immunosurveillance by impairing the ability of infiltrating macrophages to indirectly present tumor antigens. Cancer Res 2015; 75: 3268–3278.

    Article  CAS  PubMed  Google Scholar 

  23. Lei F, Zhao B, Haque R, Xiong X, Budgeon L, Christensen ND et al. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res 2011; 71: 4742–4747.

    Article  CAS  PubMed  Google Scholar 

  24. Ho WY, Blattman JN, Dossett ML, Yee C, Greenberg PD . Adoptive immunotherapy: engineering T cell responses as biologic weapons for tumor mass destruction. Cancer Cell 2003; 3: 431–437.

    Article  CAS  PubMed  Google Scholar 

  25. Spiotto MT, Rowley DA, Schreiber H . Bystander elimination of antigen loss variants in established tumors. Nat Med 2004; 10: 294–298.

    Article  CAS  PubMed  Google Scholar 

  26. Leone E, Morelli E, Di Martino MT, Amodio N, Foresta U, Gulla A et al. Targeting miR-21 inhibits in vitro and in vivo multiple myeloma cell growth. Clin Cancer Res 2013; 19: 2096–2106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee DH, Son DJ, Park MH, Yoon DY, Han SB, Hong JT . Glutathione peroxidase 1 deficiency attenuates concanavalin A-induced hepatic injury by modulation of T-cell activation. Cell Death Dis 2016; 7: e2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee KC, Lin HC, Huang YH, Hung SC . Allo-transplantation of mesenchymal stem cells attenuates hepatic injury through IL1Ra dependent macrophage switch in a mouse model of liver disease. J Hepatol 2015; 63: 1405–1412.

    Article  CAS  PubMed  Google Scholar 

  29. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 1998; 95: 29–39.

    Article  CAS  PubMed  Google Scholar 

  30. Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S et al. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 2015; 125: 1069–1080.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Garchow B, Kiriakidou M . MicroRNA-21 deficiency protects from lupus-like autoimmunity in the chronic graft-versus-host disease model of systemic lupus erythematosus. Clin Immunol 2016; 162: 100–106.

    Article  CAS  PubMed  Google Scholar 

  32. Xu WD, Pan HF, Li JH, Ye DQ . MicroRNA-21 with therapeutic potential in autoimmune diseases. Expert Opin Ther Targets 2013; 17: 659–665.

    Article  CAS  PubMed  Google Scholar 

  33. Gupta SK, Itagaki R, Zheng X, Batkai S, Thum S, Ahmad F et al. miR-21 promotes fibrosis in an acute cardiac allograft transplantation model. Cardiovasc Res 2016; 110: 215–226.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Z, Zha Y, Hu W, Huang Z, Gao Z, Zang Y et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (MiR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem 2013; 288: 37082–37093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207: 1589–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Garchow BG, Bartulos Encinas O, Leung YT, Tsao PY, Eisenberg RA, Caricchio R et al. Silencing of microRNA-21 in vivo ameliorates autoimmune splenomegaly in lupus mice. EMBO Mol Med 2011; 3: 605–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 2008; 456: 980–984.

    Article  CAS  PubMed  Google Scholar 

  38. Wang T, Feng Y, Sun H, Zhang L, Hao L, Shi C et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am J Pathol 2012; 181: 1911–1920.

    Article  PubMed  Google Scholar 

  39. Ma X, Conklin DJ, Li F, Dai Z, Hua X, Li Y et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun 2015; 6: 7151.

    Article  PubMed  Google Scholar 

  40. Song G, Sharma AD, Roll GR, Ng R, Lee AY, Blelloch RH et al. MicroRNAs control hepatocyte proliferation during liver regeneration. Hepatology 2010; 51: 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  41. Meng YB, Li X, Li ZY, Zhao J, Yuan XB, Ren Y et al. microRNA-21 promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/beta-catenin pathway. J Orthop Res 2015; 33: 957–964.

    Article  CAS  PubMed  Google Scholar 

  42. Kim YJ, Hwang SJ, Bae YC, Jung JS . MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells 2009; 27: 3093–3102.

    CAS  PubMed  Google Scholar 

  43. Ni Y, Zhang K, Liu X, Yang T, Wang B, Fu L et al. miR-21 promotes the differentiation of hair follicle-derived neural crest stem cells into Schwann cells. Neural Regen Res 2014; 9: 828–836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  45. Meylan E, Dooley AL, Feldser DM, Shen L, Turk E, Ouyang C et al. Requirement for NF-kappaB signalling in a mouse model of lung adenocarcinoma. Nature 2009; 462: 104–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Basseres DS, Ebbs A, Levantini E, Baldwin AS . Requirement of the NF-kappaB subunit p65/RelA for K-Ras-induced lung tumorigenesis. Cancer Res 2010; 70: 3537–3546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Uzzo RG, Rayman P, Kolenko V, Clark PE, Cathcart MK, Bloom T et al. Renal cell carcinoma-derived gangliosides suppress nuclear factor-kappaB activation in T cells. J Clin Invest 1999; 104: 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Simpson-Abelson MR, Loyall JL, Lehman HK, Barnas JL, Minderman H, O'Loughlin KL et al. Human ovarian tumor ascites fluids rapidly and reversibly inhibit T cell receptor-induced NF-kappaB and NFAT signaling in tumor-associated T cells. Cancer Immun 2013; 13: 14.

    PubMed  PubMed Central  Google Scholar 

  50. Barnes SE, Wang Y, Chen L, Molinero LL, Gajewski TF, Evaristo C et al. T cell-NF-kappaB activation is required for tumor control in vivo. J Immunother Cancer 2015; 3: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chen H, Fu T, Suh WK, Tsavachidou D, Wen S, Gao J et al. CD4 T cells require ICOS-mediated PI3K signaling to increase T-Bet expression in the setting of anti-CTLA-4 therapy. Cancer Immunol Res 2014; 2: 167–176.

    Article  CAS  PubMed  Google Scholar 

  52. Wu Y, Deng Z, Tang Y, Zhang S, Zhang YQ . Over-expressing Akt in T cells to resist tumor immunosuppression and increase anti-tumor activity. BMC Cancer 2015; 15: 603.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Adams JL, Smothers J, Srinivasan R, Hoos A . Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discovery 2015; 14: 603–622.

    Article  CAS  PubMed  Google Scholar 

  54. Zhan MM, Hu XQ, Liu XX, Ruan BF, Xu J, Liao C . From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway. Drug Discovery Today 2016; 21: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  55. Yang JC, Rosenberg SA . Adoptive T-cell therapy for cancer. Adv Immunol 2016; 130: 279–294.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rosenberg SA, Restifo NP . Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348: 62–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu Y, Heinrichs J, Bastian D, Fu J, Nguyen H, Schutt S et al. MicroRNA-17-92 controls T-cell responses in graft-versus-host disease and leukemia relapse in mice. Blood 2015; 126: 1314–1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kosaka A, Ohkuri T, Ikeura M, Kohanbash G, Okada H . Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity. Biochem Biophys Res Commun 2015; 458: 549–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu J, Wu CP, Lu BF, Jiang JT . Mechanism of T cell regulation by microRNAs. Cancer Biol Med 2013; 10: 131–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC, Merck E et al. MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 2013; 38: 742–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q et al. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials 2008; 29: 1233–1241.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao T, Mao G, Zhang M, Zou Y, Feng W, Gu X et al. Enhanced antitumor and reduced toxicity effect of Schisanreae polysaccharide in 5-Fu treated Heps-bearing mice. Int J Biol Macromol 2014; 63: 114–118.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Basic Research Program of China (2012CB517603), the National High Technology Research and Development Program of China (2014AA020707), the National Natural Science Foundation of China (31671031, 81673380, 31200695, 31400671, 51173076, 91129712 and 81102489), the Program for New Century Excellent Talents in University (NCET-13-0272), Nanjing University State Key Laboratory of Pharmaceutical Biotechnology Open Grant (02ZZYJ-201307). CW acknowledges the funding supports from University of Macau (MYRG2014-00069-ICMS-QRCM, MYRG2015-00160-ICMS-QRCM) and the opening fund of the State Key Laboratory of Quality Research in Chinese Medicine, University of Macau (No. 005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Zhang or L Dong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Wang, C., Mu, R. et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene 36, 4212–4223 (2017). https://doi.org/10.1038/onc.2017.62

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.62

This article is cited by

Search

Quick links