Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FOXC1: an emerging marker and therapeutic target for cancer

Abstract

The Forkhead box C1 (FOXC1) transcription factor is involved in normal embryonic development and regulates the development and function of many organs. Most recently, a large body of literature has shown that FOXC1 plays a critical role in tumor development and metastasis. Clinical studies have demonstrated that elevated FOXC1 expression is associated with poor prognosis in many cancer subtypes, such as basal-like breast cancer (BLBC). FOXC1 is highly and specifically expressed in BLBC as opposed to other breast cancer subtypes. Its functions in breast cancer have been extensively explored. This review will summarize current knowledge on the function and regulation of FOXC1 in tumor development and progression with a focus on BLBC, as well as the implications of these new findings in cancer diagnosis and treatment.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Kaestner KH, Knochel W, Martinez DE . Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14: 142–146.

    CAS  PubMed  Google Scholar 

  2. Lehmann OJ, Sowden JC, Carlsson P, Jordan T, Bhattacharya SS . Fox's in development and disease. Trends Genet 2003; 19: 339–344.

    CAS  PubMed  Google Scholar 

  3. Lam EW, Brosens JJ, Gomes AR, Koo CY . Forkhead box proteins: tuning forks for transcriptional harmony. Nat Rev Cancer 2013; 13: 482–495.

    CAS  PubMed  Google Scholar 

  4. Myatt SS, Lam EW . The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7: 847–859.

    CAS  PubMed  Google Scholar 

  5. Nishimura DY, Swiderski RE, Alward WL, Searby CC, Patil SR, Bennet SR et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nat Genet 1998; 19: 140–147.

    CAS  PubMed  Google Scholar 

  6. Berry FB, Mirzayans F, Walter MA . Regulation of FOXC1 stability and transcriptional activity by an epidermal growth factor-activated mitogen-activated protein kinase signaling cascade. J Biol Chem 2006; 281: 10098–10104.

    CAS  PubMed  Google Scholar 

  7. Berry FB, Saleem RA, Walter MA . FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem 2002; 277: 10292–10297.

    CAS  PubMed  Google Scholar 

  8. Pierrou S, Hellqvist M, Samuelsson L, Enerbäck S, Carlsson P . Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J 1994; 13: 5002–5012.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mears AJ, Jordan T, Mirzayans F, Dubois S, Kume T, Parlee M . Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am J Hum Genet 1998; 63: 1316–1328.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tumer Z, Bach-Holm D . Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 2009; 17: 1527–1539.

    PubMed  PubMed Central  Google Scholar 

  11. Lines MA, Kozlowski K, Walter MA . Molecular genetics of Axenfeld-Rieger malformations. Hum Mol Genet 2002; 11: 1177–1184.

    CAS  PubMed  Google Scholar 

  12. Sasaki H, Hogan BL . Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 1993; 118: 47–59.

    CAS  PubMed  Google Scholar 

  13. Kume T, Deng KY, Winfrey V, Gould DB, Walter MA, Hogan BL . The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998; 93: 985–996.

    CAS  PubMed  Google Scholar 

  14. Zarbalis K, Siegenthaler JA, Choe Y, May SR, Peterson AS, Pleasure SJ . Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development. Proc Natl Acad Sci USA 2007; 104: 14002–14007.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Siegenthaler JA, Ashique AM, Zarbalis K, Patterson KP, Hecht JH, Kane MA et al. Retinoic acid from the meninges regulates cortical neuron generation. Cell 2009; 139: 597–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC et al. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 2009; 41: 1037–1042.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haldipur P, Gillies GS, Janson OK, Chizhikov VV, Mithal DS, Miller RJ et al. Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth. Elife 2014; 3: e03962.

    PubMed Central  Google Scholar 

  18. Tribulo C, Aybar MJ, Nguyen VH, Mullins MC, Mayor R . Regulation of Msx genes by a Bmp gradient is essential for neural crest specification. Development 2003; 130: 6441–6452.

    CAS  PubMed  Google Scholar 

  19. Rice R, Rice DP, Olsen BR, Thesleff I . Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4. Dev Biol 2003; 262: 75–87.

    CAS  PubMed  Google Scholar 

  20. Mirzayans F, Lavy R, Penner-Chea J, Berry FB . Initiation of early osteoblast differentiation events through the direct transcriptional regulation of Msx2 by FOXC1. PLoS One 2012; 7: e49095.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun J, Ishii M, Ting MC, Maxson R . Foxc1 controls the growth of the murine frontal bone rudiment by direct regulation of a Bmp response threshold of Msx2. Development 2013; 140: 1034–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida M, Hata K, Takashima R, Ono K, Nakamura E, Takahata Y et al. The transcription factor Foxc1 is necessary for Ihh-Gli2-regulated endochondral ossification. Nat Commun 2015; 6: 6653.

    CAS  PubMed  Google Scholar 

  23. Han B, Qu Y, Jin Y, Yu Y, Deng N, Wawrowsky K et al. FOXC1 activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep 2015; 13: 1046–1058.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kume T, Jiang H, Topczewska JM, Hogan BL . The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes Dev 2001; 15: 2470–2482.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mayeuf-Louchart A, Montarras D, Bodin C, Kume T, Vincent SD, Buckingham M . Endothelial cell specification in the somite is compromised in Pax3-positive progenitors of Foxc1/2 conditional mutants, with loss of forelimb myogenesis. Development 2016; 143: 872–879.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Topczewska JM, Topczewski J, Shostak A, Kume T, Solnica-Krezel L, Hogan BL . The winged helix transcription factor Foxc1a is essential for somitogenesis in zebrafish. Genes Dev 2001; 15: 2483–2493.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kume T, Deng K, Hogan BL . Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 2000; 127: 1387–1395.

    CAS  PubMed  Google Scholar 

  28. Wilm B, James RG, Schultheiss TM, Hogan BL . The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 2004; 271: 176–189.

    CAS  PubMed  Google Scholar 

  29. Mattiske D, Kume T, Hogan BL . The mouse forkhead gene Foxc1 is required for primordial germ cell migration and antral follicle development. Dev Biol 2006; 290: 447–458.

    CAS  PubMed  Google Scholar 

  30. Ray PS, Wang J, Qu Y, Sim MS, Shamonki J, Bagaria SP et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res 2010; 70: 3870–3876.

    CAS  PubMed  Google Scholar 

  31. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA 2010; 107: 15449–15454.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ray PS, Bagaria SP, Wang J, Shamonki JM, Ye X, Sim MS et al. Basal-like breast cancer defined by FOXC1 expression offers superior prognostic value: a retrospective immunohistochemical study. Ann Surg Oncol 2011; 18: 3839–3847.

    PubMed  Google Scholar 

  33. Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B et al. Diagnosis of basal-like breast cancer using a FOXC1-based assay. J Natl Cancer Inst 2015; 107: djv148.

    PubMed  PubMed Central  Google Scholar 

  34. Sizemore ST, Keri RA . The forkhead box transcription factor FOXC1 promotes breast cancer invasion by inducing matrix metalloprotease 7 (MMP7) expression. J Biol Chem 2012; 287: 24631–24640.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bloushtain-Qimron N, Yao J, Snyder EL, Shipitsin M, Campbell LL, Mani SA et al. Cell type-specific DNA methylation patterns in the human breast. Proc Natl Acad Sci USA 2008; 105: 14076–14081.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Xia L, Huang W, Tian D, Zhu H, Qi X, Chen Z et al. Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology 2013; 57: 610–624.

    CAS  PubMed  Google Scholar 

  37. Xu ZY, Ding SM, Zhou L, Xie HY, Chen KJ, Zhang W et al. FOXC1 contributes to microvascular invasion in primary hepatocellular carcinoma via regulating epithelial-mesenchymal transition. Int J Biol Sci 2012; 8: 1130–1141.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang W, Chen Z, Zhang L, Tian D, Wang D, Fan D et al. Interleukin-8 induces expression of FOXC1 to promote transactivation of CXCR1 and CCL2 in hepatocellular carcinoma cell lines and formation of metastases in mice. Gastroenterology 2015; 149: 1053–1067.

    CAS  PubMed  Google Scholar 

  39. Somerville TD, Wiseman DH, Spencer GJ, Huang X, Lynch JT, Leong HS et al. Frequent derepression of the mesenchymal transcription factor gene FOXC1 in acute myeloid leukemia. Cancer Cell 2015; 28: 329–342.

    CAS  PubMed  Google Scholar 

  40. Wang L, Gu F, Liu CY, Wang RJ, Li J, Xu JY . High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol 2012; 34: 853–858.

    PubMed  Google Scholar 

  41. Xu Y, Shao QS, Yao HB, Jin Y, Ma YY, Jia LH . Overexpression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology 2014; 64: 963–970.

    PubMed  Google Scholar 

  42. Yao T, Wang Q, Zhang W, Bian A, Zhang J . Identification of genes associated with renal cell carcinoma using gene expression profiling analysis. Oncol Lett 2016; 12: 73–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Guo X, Bray MJ, Ding Z, Zhao Z . An integrative genomics approach for identifying novel functional consequences of PBRM1 truncated mutations in clear cell renal cell carcinoma (ccRCC). BMC Genom 2016; 17: 515.

    CAS  Google Scholar 

  44. Li C, Shen W, Shen S, Ai Z . Gene expression patterns combined with bioinformatics analysis identify genes associated with cholangiocarcinoma. Comput Biol Chem 2013; 47: 192–197.

    CAS  PubMed  Google Scholar 

  45. Wei LX, Zhou RS, Xu HF, Wang JY, Yuan MH . High expression of FOXC1 is associated with poor clinical outcome in non-small cell lung cancer patients. Tumour Biol 2013; 34: 941–946.

    CAS  PubMed  Google Scholar 

  46. Peraldo-Neia C, Migliardi G, Mello-Grand M, Montemurro F, Segir R, Pignochino Y et al. Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer. BMC Cancer 2011; 11: 31.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van der Heul-Nieuwenhuijsen L, Dits NF, Jenster G . Gene expression of forkhead transcription factors in the normal and diseased human prostate. BJU Int 2009; 103: 1574–1580.

    CAS  PubMed  Google Scholar 

  48. Wang J, Li L, Liu S, Zhao Y, Wang L, Du G . FOXC1 promotes melanoma by activating MST1R/PI3K/AKT. Oncotarget 2016; 7: 84375–84387.

    PubMed  PubMed Central  Google Scholar 

  49. Xu YY, Tian J, Hao Q, Yin LR . MicroRNA-495 downregulates FOXC1 expression to suppress cell growth and migration in endometrial cancer. Tumour Biol 2016; 37: 239–251.

    CAS  PubMed  Google Scholar 

  50. Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int J Cancer 2012; 130: 1036–1045.

    CAS  PubMed  Google Scholar 

  51. Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF et al. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    CAS  Google Scholar 

  52. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK et al. Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 2008; 14: 1368–1376.

    CAS  PubMed  Google Scholar 

  53. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160–1167.

    PubMed  PubMed Central  Google Scholar 

  54. Wang J, Ray PS, Sim MS, Zhou XZ, Lu KP, Lee AV et al. FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-kappaB signaling. Oncogene 2012; 31: 4798–4802.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Nieto MA . Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.

    PubMed  Google Scholar 

  56. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    CAS  PubMed  Google Scholar 

  57. Powell AA, Talasaz AH, Zhang H, Coram MA, Reddy A, Deng G et al. Single cell profiling of circulating tumor cells: transcriptional heterogeneity and diversity from breast cancer cell lines. PLoS One 2012; 7: e33788.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 2013; 339: 580–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527: 525–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015; 527: 472–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Tkocz D, Crawford NT, Buckley NE, Berry FB, Kennedy RD, Gorski JJ et al. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene 2012; 31: 3667–3678.

    CAS  PubMed  Google Scholar 

  62. Dejeux E, Rønneberg JA, Solvang H, Bukholm I, Geisler S, Aas T et al. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer 2010; 9: 68.

    PubMed  PubMed Central  Google Scholar 

  63. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zvelebil M, Oliemuller E, Gao Q, Wansbury O, Mackay A, Kendrick H et al. Embryonic mammary signature subsets are activated in Brca1-/- and basal-like breast cancers. Breast Cancer Res 2013; 15: R25.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Visvader JE, Lindeman GJ . Cancer stem cells: current status and evolving complexities. Cell Stem Cell 2012; 10: 717–728.

    CAS  PubMed  Google Scholar 

  66. Brisken C, O'Malley B . Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2010; 2: a003178.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 2007; 67: 6477–6483.

    CAS  PubMed  Google Scholar 

  68. Yu-Rice Y, Jin Y, Han B, Qu Y, Johnson J, Watanabe T et al. FOXC1 is involved in ERalpha silencing by counteracting GATA3 binding and is implicated in endocrine resistance. Oncogene 2016; 35: 5400–5411.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu JM, Fackler MJ, Halushka MK, Molavi DW, Taylor ME, Teo WW et al. Heterogeneity of breast cancer metastases: comparison of therapeutic target expression and promoter methylation between primary tumors and their multifocal metastases. Clin Cancer Res 2008; 14: 1938–1946.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Kuukasjärvi T, Kononen J, Helin H, Holli K, Isola J . Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 1996; 14: 2584–2589.

    PubMed  Google Scholar 

  71. Smid M, Wang Y, Zhang Y, Sieuwerts AM, Yu J, Klijn JG et al. Subtypes of breast cancer show preferential site of relapse. Cancer Res 2008; 68: 3108–3114.

    CAS  PubMed  Google Scholar 

  72. Zhang L, Zhang S, Yao J, Lowery FJ, Zhang Q, Huang WC et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 2015; 527: 100–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang L, Siegenthaler JA, Dowell RD, Yi R . Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 2016; 351: 613–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005; 353: 793–802.

    CAS  PubMed  Google Scholar 

  75. Jin Y, Han B, Chen J, Wiedemeyer R, Orsulic S, Bose S et al. FOXC1 is a critical mediator of EGFR function in human basal-like breast cancer. Ann Surg Oncol 2014; S4: 758–766.

    Google Scholar 

  76. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 2005; 11: 5175–5180.

    CAS  PubMed  Google Scholar 

  77. Foulkes WD, Stefansson IM, Chappuis PO, Bégin LR, Goffin JR, Wong N et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst 2003; 95: 1482–1485.

    CAS  PubMed  Google Scholar 

  78. Muggerud AA, Rønneberg JA, Wärnberg F, Botling J, Busato F, Jovanovic J et al. Frequent aberrant DNA methylation of ABCB1, FOXC1, PPP2R2B and PTEN in ductal carcinoma in situ and early invasive breast cancer. Breast Cancer Res 2010; 12: R3.

    PubMed  PubMed Central  Google Scholar 

  79. Klajic J, Fleischer T, Dejeux E, Edvardsen H, Warnberg F, Bukholm I et al. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors. BMC Cancer 2013; 13: 456.

    PubMed  PubMed Central  Google Scholar 

  80. Kuhmann C, Weichenhan D, Rehli M, Plass C, Schmezer P, Popanda O . DNA methylation changes in cells regrowing after fractioned ionizing radiation. Radiother Oncol 2011; 101: 116–121.

    CAS  PubMed  Google Scholar 

  81. Lin Z, Sun L, Chen W, Liu B, Wang Y, Fan S et al. miR-639 regulates transforming growth factor beta-induced epithelial-mesenchymal transition in human tongue cancer cells by targeting FOXC1. Cancer Sci 2014; 105: 1288–1298.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Blonska M, Zhu Y, Chuang HH, You MJ, Kunkalla K, Vega F et al. Jun-regulated genes promote interaction of diffuse large B-cell lymphoma with the microenvironment. Blood 2015; 125: 981–991.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hoshino Y, Katsuno Y, Ehata S, Miyazono K . Autocrine TGF-beta protects breast cancer cells from apoptosis through reduction of BH3-only protein, Bim. J Biochem 2011; 149: 55–65.

    CAS  PubMed  Google Scholar 

  84. Zhou Y, Kato H, Asanoma K, Kondo H, Arima T, Kato K et al. Identification of FOXC1 as a TGF-beta1 responsive gene and its involvement in negative regulation of cell growth. Genomics 2002; 80: 465–472.

    CAS  PubMed  Google Scholar 

  85. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K . The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010; 33: 387–399.

    CAS  PubMed  Google Scholar 

  86. Omatsu Y, Seike M, Sugiyama T, Kume T, Nagasawa T . Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation. Nature 2014; 508: 536–540.

    CAS  PubMed  Google Scholar 

  87. Lay K, Kume T, Fuchs E . FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci USA 2016; 113: E1506–E1515.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T . The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. Dev Biol 2006; 294: 458–470.

    CAS  PubMed  Google Scholar 

  89. De Val S, Chi NC, Meadows SM, Minovitsky S, Anderson JP, Harris IS et al. Combinatorial regulation of endothelial gene expression by ets and forkhead transcription factors. Cell 2008; 135: 1053–1064.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hayashi H, Kume T . Foxc transcription factors directly regulate Dll4 and Hey2 expression by interacting with the VEGF-Notch signaling pathways in endothelial cells. PLoS One 2008; 3: e2401.

    PubMed  PubMed Central  Google Scholar 

  91. Siegenthaler JA, Choe Y, Patterson KP, Hsieh I, Li D, Jaminet SC et al. Foxc1 is required by pericytes during fetal brain angiogenesis. Biol Open 2013; 2: 647–659.

    PubMed  PubMed Central  Google Scholar 

  92. Prasitsak T, Nandar M, Okuhara S, Ichinose S, Ota MS, Iseki S . Foxc1 is required for early stage telencephalic vascular development. Dev Dyn 2015; 244: 703–711.

    CAS  PubMed  Google Scholar 

  93. Skarie JM, Link BA . FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Invest Ophthalmol Vis Sci 2009; 50: 5026–5034.

    PubMed  Google Scholar 

  94. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    CAS  PubMed  Google Scholar 

  95. Rakha EA, Reis-Filho JS, Ellis IO . Basal-like breast cancer: a critical review. J Clin Oncol 2008; 26: 2568–2581.

    PubMed  Google Scholar 

  96. Sizemore GM, Sizemore ST, Pal B, Booth CN, Seachrist DD, Abdul-Karim FW et al. FOXC1 is enriched in the mammary luminal progenitor population, but is not necessary for mouse mammary ductal morphogenesis. Biol Reprod 2013; 89: 10.

    PubMed  PubMed Central  Google Scholar 

  97. Stute P, Sielker S, Wood CE, Register TC, Lees CJ, Dewi FN et al. Life stage differences in mammary gland gene expression profile in non-human primates. Breast Cancer Res Treat 2012; 133: 617–634.

    CAS  PubMed  Google Scholar 

  98. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

    CAS  PubMed  Google Scholar 

  99. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (CA151610), the Avon Foundation for Women (02-2014-063), David Salomon Translational Breast Cancer Research Fund, and Eleanor and Glenn Padnick Discovery Fund in Cellular Therapy to Xiaojiang Cui, and the Fashion Footwear Charitable Foundation of New York, Inc., the Entertainment Industry Foundation, the Margie and Robert E Petersen Foundation and the Linda and Jim Lippman Research Fund to Armando Giuliano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Cui.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, B., Bhowmick, N., Qu, Y. et al. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene 36, 3957–3963 (2017). https://doi.org/10.1038/onc.2017.48

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.48

Further reading

Search

Quick links