Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells

Abstract

Mixed lineage kinase 3 (MLK3) functions in migration and/or invasion of several human cancers; however, the role of MLK3 in colorectal cancer (CRC) invasion is unknown. MLK3 is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) which activates MAPK pathways through either kinase-dependent or -independent mechanisms. Human colorectal tumors display increased levels of reactive oxygen species (ROS) or oxidative stress. ROS, such as H2O2, are important for carcinogenesis and activate MAPK signaling pathways. In human colorectal carcinoma (HCT116) cells treated with H2O2, extracellular signal-regulated kinases 1 and 2 (ERK1/2) were activated and MLK3 exhibited reduced electrophoretic mobility (shift) in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE), which was eliminated by phosphatase treatment. Pretreatment with the ROS scavenger N-acetyl-L-cysteine, the ERK1/2 inhibitor UO126, or ERK1/2 siRNA knockdown blocked the H2O2-induced shift of MLK3, while MLK3 inhibition with Cep1347 did not. In co-immunoprecipitation experiments performed on H2O2-treated HCT116 cells, endogenous MLK3 associated with endogenous ERK1/2 and B-Raf. Active ERK1 phosphorylated kinase dead FLAG-MLK3 in vitro, whereas ERK1 phosphorylation of kinase dead FLAG-MLK3-S705A-S758A was reduced. Both MLK3 siRNA knockdown and FLAG-MLK3-S705A-S758A expression decreased ERK1/2 activation in H2O2-treated cells. Prolonged H2O2 treatment activated ERK1/2 and promoted invasion of colon cancer cells, which was attenuated by MLK3 siRNA knockdown. Furthermore, S705A-S758A-FLAG-MLK3 demonstrated decreased oxidative-stress induced colon cancer cell invasion, but increased interaction with GST-B-Raf as compared with wild-type-FLAG-MLK3 in H2O2-treated cells. These results suggest oxidative stress stimulates an ERK1/2-dependent phosphorylation of MLK3 on Ser705 and Ser758, which promotes MLK3-dependent B-Raf and ERK1/2 activation; this positive feedback loop enhances the invasion of colon cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ing YL, Leung IW, Heng HH, Tsui LC, Lassam NJ . MLK-3: identification of a widely-expressed protein kinase bearing an SH3 domain and a leucine zipper-basic region domain. Oncogene 1994; 9: 1745–1750.

    CAS  PubMed  Google Scholar 

  2. Gallo KA, Mark MR, Scadden DT, Wang Z, Gu Q, Godowski PJ . Identification and characterization of SPRK, a novel src-homology 3 domain-containing proline-rich kinase with serine/threonine kinase activity. J Biol Chem 1994; 269: 15092–15100.

    CAS  PubMed  Google Scholar 

  3. Gallo KA, Johnson GL . Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nat Rev Mol Cell Biol 2002; 3: 663–672.

    Article  CAS  PubMed  Google Scholar 

  4. Bock BC, Vacratsis PO, Qamirani E, Gallo KA . Cdc42-induced activation of the mixed-lineage kinase SPRK in vivo. Requirement of the Cdc42/Rac interactive binding motif and changes in phosphorylation. J Biol Chem 2000; 275: 14231–14241.

    Article  CAS  PubMed  Google Scholar 

  5. Teramoto H, Coso OA, Miyata H, Igishi T, Miki T, Gutkind JS . Signaling from the small GTP-binding proteins Rac1 and Cdc42 to the c-Jun N-terminal kinase/stress-activated protein kinase pathway. A role for mixed lineage kinase 3/protein-tyrosine kinase 1, a novel member of the mixed lineage kinase family. J Biol Chem 1996; 271: 27225–27228.

    Article  CAS  PubMed  Google Scholar 

  6. Leung IW, Lassam N . Dimerization via tandem leucine zippers is essential for the activation of the mitogen-activated protein kinase kinase kinase, MLK-3. J Biol Chem 1998; 273: 32408–32415.

    Article  CAS  PubMed  Google Scholar 

  7. Du Y, Bock BC, Schachter KA, Chao M, Gallo KA . Cdc42 induces activation loop phosphorylation and membrane targeting of mixed lineage kinase 3. J Biol Chem 2005; 280: 42984–42993.

    Article  CAS  PubMed  Google Scholar 

  8. Leung IW, Lassam N . The kinase activation loop is the key to mixed lineage kinase-3 activation via both autophosphorylation and hematopoietic progenitor kinase 1 phosphorylation. J Biol Chem 2001; 276: 1961–1967.

    Article  CAS  PubMed  Google Scholar 

  9. Rana A, Gallo K, Godowski P, Hirai S, Ohno S, Zon L et al. The mixed lineage kinase SPRK phosphorylates and activates the stress-activated protein kinase activator, SEK-1. J Biol Chem 1996; 271: 19025–19028.

    Article  CAS  PubMed  Google Scholar 

  10. Whitmarsh AJ, Cavanagh J, Tournier C, Yasuda J, Davis RJ . A mammalian scaffold complex that selectively mediates MAP kinase activation. Science 1998; 281: 1671–1674.

    Article  CAS  PubMed  Google Scholar 

  11. Tibbles LA, Ing YL, Kiefer F, Chan J, Iscove N, Woodgett JR et al. MLK-3 activates the SAPK/JNK and p38/RK pathways via SEK1 and MKK3/6. EMBO J 1996; 15: 7026–7035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marusiak AA, Edwards ZC, Hugo W, Trotter EW, Girotti MR, Stephenson NL et al. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors. Nat Commun 2014; 5: 3901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chadee DN, Kyriakis JM . MLK3 is required for mitogen activation of B-Raf, ERK and cell proliferation. Nat Cell Biol 2004; 6: 770–776.

    Article  CAS  PubMed  Google Scholar 

  14. Chadee DN, Xu D, Hung G, Andalibi A, Lim DJ, Luo Z et al. Mixed-lineage kinase 3 regulates B-Raf through maintenance of the B-Raf/Raf-1 complex and inhibition by the NF2 tumor suppressor protein. Proc Natl Acad Sci USA 2006; 103: 4463–4468.

    Article  CAS  PubMed  Google Scholar 

  15. Swenson-Fields KI, Sandquist JC, Rossol-Allison J, Blat IC, Wennerberg K, Burridge K et al. MLK3 limits activated Galphaq signaling to Rho by binding to p63RhoGEF. Mol Cell 2008; 32: 43–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chien ST, Lin SS, Wang CK, Lee YB, Chen KS, Fong Y et al. Acacetin inhibits the invasion and migration of human non-small cell lung cancer A549 cells by suppressing the p38alpha MAPK signaling pathway. Mol Cell Biochem 2011; 350: 135–148.

    Article  CAS  PubMed  Google Scholar 

  17. Mishra P, Senthivinayagam S, Rangasamy V, Sondarva G, Rana B . Mixed lineage kinase-3/JNK1 axis promotes migration of human gastric cancer cells following gastrin stimulation. Mol Endocrinol 2010; 24: 598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen J, Miller EM, Gallo KA . MLK3 is critical for breast cancer cell migration and promotes a malignant phenotype in mammary epithelial cells. Oncogene 2010; 29: 4399–4411.

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Gallo KA . MLK3 regulates paxillin phosphorylation in chemokine-mediated breast cancer cell migration and invasion to drive metastasis. Cancer Res 2012; 72: 4130–4140.

    Article  CAS  PubMed  Google Scholar 

  20. Cronan MR, Nakamura K, Johnson NL, Granger DA, Cuevas BD, Wang JG et al. Defining MAP3 kinases required for MDA-MB-231 cell tumor growth and metastasis. Oncogene 2012; 31: 3889–3900.

    Article  CAS  PubMed  Google Scholar 

  21. Rattanasinchai C, Llewellyn BJ, Conrad SE, Gallo KA . MLK3 regulates FRA-1 and MMPs to drive invasion and transendothelial migration in triple-negative breast cancer cells. Oncogenesis 2017; 6: e345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhan Y, Abi Saab WF, Modi N, Stewart AM, Liu J, Chadee DN . Mixed lineage kinase 3 is required for matrix metalloproteinase expression and invasion in ovarian cancer cells. Exp Cell Res 2012; 318: 1641–1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang J, Lu L, Xiong Y, Qin W, Zhang Y, Qian Y et al. MLK3 promotes melanoma proliferation and invasion and is a target of microRNA-125b. Clin Exp Dermatol 2014; 39: 376–384.

    Article  CAS  PubMed  Google Scholar 

  24. Misek SA, Chen J, Schroeder L, Rattanasinchai C, Sample A, Sarkaria JN et al. EGFR signals through a DOCK180-MLK3 axis to drive glioblastoma cell invasion. Mol Cancer Res 2017.

  25. Lan T, Ma W, Hong Z, Wu L, Chen X, Yuan Y . Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. J Exp Clin Cancer Res 2017; 36: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA: Cancer J Clin 2015; 65: 5–29.

    Google Scholar 

  27. Perse M . Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? BioMed Res Int 2013; 2013: 725710.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO . Mitogen-activated protein kinases and reactive oxygen species: how can ros activate MAPK pathways? J Signal Transduct 2011; 2011: 792639.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Velho S, Oliveira C, Paredes J, Sousa S, Leite M, Matos P et al. Mixed lineage kinase 3 gene mutations in mismatch repair deficient gastrointestinal tumours. Hum Mol Genet 2010; 19: 697–706.

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Nishitoh H, Ichijo H, Kyriakis JM . Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 2000; 20: 2198–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schachter KA, Du Y, Lin A, Gallo KA . Dynamic positive feedback phosphorylation of mixed lineage kinase 3 by JNK reversibly regulates its distribution to Triton-soluble domains. J Biol Chem 2006; 281: 19134–19144.

    Article  CAS  PubMed  Google Scholar 

  32. Maroney AC, Finn JP, Connors TJ, Durkin JT, Angeles T, Gessner G et al. Cep-1347 (KT7515), a semisynthetic inhibitor of the mixed lineage kinase family. J Biol Chem 2001; 276: 25302–25308.

    Article  CAS  PubMed  Google Scholar 

  33. Gonzalez FA, Raden DL, Davis RJ . Identification of substrate recognition determinants for human ERK1 and ERK2 protein kinases. J Biol Chem 1991; 266: 22159–22163.

    CAS  PubMed  Google Scholar 

  34. Vacratsis PO, Phinney BS, Gage DA, Gallo KA . Identification of in vivo phosphorylation sites of MLK3 by mass spectrometry and phosphopeptide mapping. Biochemistry 2002; 41: 5613–5624.

    Article  CAS  PubMed  Google Scholar 

  35. Wlochowitz D, Haubrock M, Arackal J, Bleckmann A, Wolff A, Beissbarth T et al. Computational identification of key regulators in two different colorectal cancer cell lines. Front Genet 2016; 7: 42.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH . MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7: ra52.

    Article  PubMed  Google Scholar 

  37. Xu Z, Kukekov NV, Greene LA . Regulation of apoptotic c-Jun N-terminal kinase signaling by a stabilization-based feed-forward loop. Mol Cell Biol 2005; 25: 9949–9959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang C, Tao Y, Wang Y, Xu Z . Regulation of the protein stability of POSH and MLK family. Protein Cell 2010; 1: 871–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu Z, Kukekov NV, Greene LA . POSH acts as a scaffold for a multiprotein complex that mediates JNK activation in apoptosis. EMBO J 2003; 22: 252–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blessing NA, Brockman AL, Chadee DN . The E3 ligase CHIP mediates ubiquitination and degradation of mixed-lineage kinase 3. Mol Cell Biol 2014; 34: 3132–3143.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Boulton TG, Gregory JS, Cobb MH . Purification and properties of extracellular signal-regulated kinase 1, an insulin-stimulated microtubule-associated protein 2 kinase. Biochemistry 1991; 30: 278–286.

    Article  CAS  PubMed  Google Scholar 

  42. Partridge J, Flaherty P . An in vitro FluoroBlok tumor invasion assay. J Vis Exp 2009; 29: 1475.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R15 CA199164 and R15 GM102831 (to DNC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Chadee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schroyer, A., Stimes, N., Abi Saab, W. et al. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene 37, 1031–1040 (2018). https://doi.org/10.1038/onc.2017.396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.396

This article is cited by

Search

Quick links