Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

XRN2 promotes EMT and metastasis through regulating maturation of miR-10a

Abstract

MicroRNAs (miRNAs) have been proposed as critical regulatory molecules in the epithelial–mesenchymal transition (EMT) program. However, the roles of mature miRNA biogenesis during EMT process needs to be defined. Here we determined that increased expression of XRN2 induced EMT and promoted metastasis in vitro and in vivo. Furthermore, we uncovered that XRN2 functions as pro-metastatic gene, which accelerates miR-10a maturation by binding pre-miR-10a in a DICER-independent manner. These findings suggest that XRN2 is a novel regulator of EMT that contributes to the metastatic processes in lung cancer through a novel miRNA regulatory mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Tsai JH, Yang J . Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27: 2192–2206.

    Article  CAS  Google Scholar 

  3. Tam WL, Weinberg RA . The epigenetics of epithelial-mesenchymal plasticity in cancer. Nat Med 2013; 19: 1438–1449.

    Article  CAS  Google Scholar 

  4. Nieto MA . Epithelial plasticity: a common theme in embryonic and cancer cells. Science 2013; 342: 1234850.

    Article  Google Scholar 

  5. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA . Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest 2009; 119: 1438–1449.

    Article  CAS  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  Google Scholar 

  7. Zhang J, Ma L . MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev 2012; 31: 653–662.

    Article  CAS  Google Scholar 

  8. Zhang H, Li Y, Lai M . The microRNA network and tumor metastasis. Oncogene 2010; 29: 937–948.

    Article  CAS  Google Scholar 

  9. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  Google Scholar 

  10. Park SM, Gaur AB, Lengyel E, Peter ME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 2008; 22: 894–907.

    Article  CAS  Google Scholar 

  11. Korpal M, Lee ES, Hu G, Kang Y . The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 2008; 283: 14910–14914.

    Article  CAS  Google Scholar 

  12. Ebert MS, Sharp PA . Roles for microRNAs in conferring robustness to biological processes. Cell 2012; 149: 515–524.

    Article  CAS  Google Scholar 

  13. Miki TS, Grosshans H . The multifunctional RNase XRN2. Biochem Soc Trans 2013; 41: 825–830.

    Article  CAS  Google Scholar 

  14. Wang M, Pestov DG . 5'-end surveillance by Xrn2 acts as a shared mechanism for mammalian pre-rRNA maturation and decay. Nucleic Acids Res 2011; 39: 1811–1822.

    Article  Google Scholar 

  15. Zakrzewska-Placzek M, Souret FF, Sobczyk GJ, Green PJ, Kufel J . Arabidopsis thaliana XRN2 is required for primary cleavage in the pre-ribosomal RNA. Nucleic Acids Res 2010; 38: 4487–4502.

    Article  CAS  Google Scholar 

  16. Couvillion MT, Bounova G, Purdom E, Speed TP, Collins K . A Tetrahymena Piwi bound to mature tRNA 3' fragments activates the exonuclease Xrn2 for RNA processing in the nucleus. Mol Cell 2012; 48: 509–520.

    Article  CAS  Google Scholar 

  17. Lu Y, Liu P, James M, Vikis HG, Liu H, Wen W et al. Genetic variants cis-regulating Xrn2 expression contribute to the risk of spontaneous lung tumor. Oncogene 2010; 29: 1041–1049.

    Article  CAS  Google Scholar 

  18. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.

    Article  CAS  Google Scholar 

  19. Kuner R, Muley T, Meister M, Ruschhaupt M, Buness A, Xu EC et al. Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer 2009; 63: 32–38.

    Article  Google Scholar 

  20. Tomida S, Takeuchi T, Shimada Y, Arima C, Matsuo K, Mitsudomi T et al. Relapse-related molecular signature in lung adenocarcinomas identifies patients with dismal prognosis. J Clin Oncol 2009; 27: 2793–2799.

    Article  CAS  Google Scholar 

  21. Lu Y, Lemon W, Liu PY, Yi Y, Morrison C, Yang P et al. A gene expression signature predicts survival of patients with stage I non-small cell lung cancer. PLoS Med 2006; 3: e467.

    Article  Google Scholar 

  22. Chatterjee S, Grosshans H . Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 2009; 461: 546–549.

    Article  CAS  Google Scholar 

  23. Lu Y, Govindan R, Wang L, Liu PY, Goodgame B, Wen W et al. MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer. Carcinogenesis 2012; 33: 1046–1054.

    Article  CAS  Google Scholar 

  24. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T . miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2009; 37: D105–D110.

    Article  CAS  Google Scholar 

  25. Zhao M, Kong L, Liu Y, Qu H . dbEMT: an epithelial-mesenchymal transition associated gene resource. Sci Rep 2015; 5: 11459.

    Article  Google Scholar 

  26. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    Article  CAS  Google Scholar 

  27. Shah N, Sukumar S . The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010; 10: 361–371.

    Article  CAS  Google Scholar 

  28. Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI et al. Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology 2009; 137: 2136–2145 e2131-2137.

    Article  CAS  Google Scholar 

  29. Chang CH, Fan TC, Yu JC, Liao GS, Lin YC, Shih A et al. The prognostic significance of RUNX2 and miR-10a/10b and their inter-relationship in breast cancer. J Transl Med 2014; 12: 257.

    Article  Google Scholar 

  30. Ohuchida K, Mizumoto K, Lin C, Yamaguchi H, Ohtsuka T, Sato N et al. MicroRNA-10a is overexpressed in human pancreatic cancer and involved in its invasiveness partially via suppression of the HOXA1 gene. Ann Surg Oncol 2012; 19: 2394–2402.

    Article  Google Scholar 

  31. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  32. Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 2008; 47: 1223–1232.

    Article  CAS  Google Scholar 

  33. Dip N, Reis ST, Timoszczuk LS, Viana NI, Piantino CB, Morais DR et al. Stage, grade and behavior of bladder urothelial carcinoma defined by the microRNA expression profile. J Urol 2012; 188: 1951–1956.

    Article  Google Scholar 

  34. Lund AH . miR-10 in development and cancer. Cell Death Differ 2010; 17: 209–214.

    Article  CAS  Google Scholar 

  35. Long MJ, Wu FX, Li P, Liu M, Li X, Tang H . MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Lett 2012; 324: 186–196.

    Article  CAS  Google Scholar 

  36. Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ et al. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica 2013; 98: 414–419.

    Article  CAS  Google Scholar 

  37. Yan Y, Luo YC, Wan HY, Wang J, Zhang PP, Liu M et al. MicroRNA-10a is involved in the metastatic process by regulating Eph tyrosine kinase receptor A4-mediated epithelial-mesenchymal transition and adhesion in hepatoma cells. Hepatology 2013; 57: 667–677.

    Article  CAS  Google Scholar 

  38. Takahashi H, Kanno T, Nakayamada S, Hirahara K, Sciume G, Muljo SA et al. TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells. Nat Immunol 2012; 13: 587–595.

    Article  CAS  Google Scholar 

  39. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF . MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 2010; 107: 13450–13455.

    Article  CAS  Google Scholar 

  40. Miki TS, Ruegger S, Gaidatzis D, Stadler MB, Grosshans H . Engineering of a conditional allele reveals multiple roles of XRN2 in Caenorhabditis elegans development and substrate specificity in microRNA turnover. Nucleic Acids Res 2014; 42: 4056–4067.

    Article  CAS  Google Scholar 

  41. Ha M, Kim VN . Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15: 509–524.

    Article  CAS  Google Scholar 

  42. Xiang S, Cooper-Morgan A, Jiao X, Kiledjian M, Manley JL, Tong L . Structure and function of the 5'→3' exoribonuclease Rat1 and its activating partner Rai1. Nature 2009; 458: 784–788.

    Article  CAS  Google Scholar 

  43. Wagschal A, Rousset E, Basavarajaiah P, Contreras X, Harwig A, Laurent-Chabalier S et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 2012; 150: 1147–1157.

    Article  CAS  Google Scholar 

  44. Langmead B, Trapnell C, Pop M, Salzberg SL . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009; 10: R25.

    Article  Google Scholar 

  45. Robinson MD, McCarthy DJ, Smyth GK . edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26: 139–140.

    Article  CAS  Google Scholar 

  46. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodological) 1995; 57: 289–300.

    Article  Google Scholar 

  47. Li H, Gui J . Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics 2004; 20 (Suppl 1): i208–i215.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been support by National Natural Science Foundation of China (no. 81372514, 81472420, 81572256 and 31401125), National Key Research and Development program (2016YFA0501800 and 2016YFC0902700), the Fundamental Research Funds for the Central Universities and 1000 talent Plan of China, Louisiana Hope Research Grant provided by Free to Breathe. We thank Alison Kriegel for reading and commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Lu, Y., Chen, E. et al. XRN2 promotes EMT and metastasis through regulating maturation of miR-10a. Oncogene 36, 3925–3933 (2017). https://doi.org/10.1038/onc.2017.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.39

This article is cited by

Search

Quick links