Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CUL4B promotes gastric cancer invasion and metastasis-involvement of upregulation of HER2

A Correction to this article was published on 28 September 2021

This article has been updated


Cullin 4B (CUL4B) is a scaffold protein overexpressed in several solid malignancies. It is known to silence tumor suppressor through post-transcriptional manner. However, its clinical significance and underlying molecular mechanisms in gastric cancer (GC) remain largely unknown. In this study, we found that CUL4B was significantly overexpressed in GC tissues and its overexpression was correlated with lymph node metastasis and poor prognosis. Through gain- and loss-of-function experiments, we showed that CUL4B promotes GC cell invasion and epithelial–mesenchymal transition (EMT) in vitro, as well as tumor growth and metastasis in vivo. Mechanistically, we identified HER2 as a downstream target gene of CUL4B in GC. CUL4B unregulated HER2 expression via transcriptionally repressing miR-125a. Intriguingly, HER2 inhibitors significantly reversed CUL4B-induced EMT in vitro and partially blocked GC metastasis in tumor xenografts with CUL4B overexpression. Finally, we suggested the involvement of the PI3K/AKT pathway in CUL4B-induced HER2 upregulation in GC. In all, we proposed a model for a CUL4B-miR-125a-HER2 oncoprotein axis, which provided novel insight into how HER2 was activated and contributed to GC progression and metastasis.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Change history


  1. Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H . Gastric cancer. Lancet 2016; 388: 2654–2664.

    Article  CAS  PubMed  Google Scholar 

  2. Van Cutsem E, Bang YJ, Feng-Yi F, Xu JM, Lee KW, Jiao SC et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015; 18: 476–484.

    Article  CAS  PubMed  Google Scholar 

  3. Shan YQ, Ying RC, Zhou CH, Zhu AK, Ye J, Zhu W et al. MMP-9 is increased in the pathogenesis of gastric cancer by the mediation of HER2. Cancer Gene Ther 2015; 22: 101–107.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson S, Xiong Y . CRL4s: the CUL4-RING E3 ubiquitin ligases. Trends Biochem Sci 2009; 34: 562–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zou Y, Mi J, Cui J, Lu D, Zhang X, Guo C et al. Characterization of nuclear localization signal in the N terminus of CUL4B and its essential role in cyclin E degradation and cell cycle progression. J Biol Chem 2009; 284: 33320–33332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Petroski MD, Deshaies RJ . Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005; 6: 9–20.

    Article  CAS  PubMed  Google Scholar 

  7. Hu H, Yang Y, Ji Q, Zhao W, Jiang B, Liu R et al. CRL4B catalyzes H2AK119 monoubiquitination and coordinates with PRC2 to promote tumorigenesis. Cancer Cell 2012; 22: 781–795.

    Article  CAS  PubMed  Google Scholar 

  8. Ji Q, Hu H, Yang F, Yuan J, Yang Y, Jiang L et al. CRL4B interacts with and coordinates the SIN3A-HDAC complex to repress CDKN1A and drive cell cycle progression. J Cell Sci 2014; 127: 4679–4691.

    Article  PubMed  Google Scholar 

  9. Yang Y, Liu R, Qiu R, Zheng Y, Huang W, Hu H et al. CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene 2015; 34: 104–118.

    Article  PubMed  Google Scholar 

  10. Yuan J, Han B, Hu H, Qian Y, Liu Z, Wei Z et al. CUL4B activates Wnt/beta-catenin signalling in hepatocellular carcinoma by repressing Wnt antagonists. J Pathol 2015; 235: 784–795.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang T, Tang HM, Wu ZH, Chen J, Lu S, Zhou CZ et al. Cullin 4B is a novel prognostic marker that correlates with colon cancer progression and pathogenesis. Med Oncol 2013; 30: 534.

    Article  PubMed  Google Scholar 

  12. Mi J, Zou Y, Lin X, Lu J, Liu X, Zhao H et al. Dysregulation of the miR-194-CUL4B negative feedback loop drives tumorigenesis in non-small-cell lung carcinoma. Mol Oncol 2017; 11: 305–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  PubMed  Google Scholar 

  14. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  15. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M . microRNAs in cancer management. Lancet Oncol 2012; 13: e249–e258.

    Article  CAS  PubMed  Google Scholar 

  16. Arabpour M, Mohammadparast S, Maftouh M, ShahidSales S, Moieni S, Akbarzade H et al. Circulating microRNAs as potential diagnostic biomarkers and therapeutic targets in gastric cancer: current status and future perspectives. Curr Med Chem 2016; 23: 4135–4150.

    Article  Google Scholar 

  17. Pencheva N, Tavazoie SF . Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol 2013; 15: 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu HT, Gao P . The roles of microRNAs related with progression and metastasis in human cancers. Tumour Biol 2016; 37: 15383–15397.

    Article  CAS  Google Scholar 

  19. Nishida N, Mimori K, Fabbri M, Yokobori T, Sudo T, Tanaka F et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin Cancer Res 2011; 17: 2725–2733.

    Article  CAS  PubMed  Google Scholar 

  20. Guarino M, Rubino B, Ballabio G . The role of epithelial-mesenchymal transition in cancer pathology. Pathology 2007; 39: 305–318.

    Article  CAS  PubMed  Google Scholar 

  21. Lin CH, Tsai CH, Yeh CT, Liang JL, Hung WC, Lin FC et al. MiR-193a-5p/ERBB2 act as concurrent chemoradiation therapy response indicator of esophageal squamous cell carcinoma. Oncotarget 2016; 7: 39680–39693.

    PubMed  PubMed Central  Google Scholar 

  22. Sukawa Y, Yamamoto H, Nosho K, Ito M, Igarashi H, Naito T et al. HER2 expression and PI3K-Akt pathway alterations in gastric cancer. Digestion 2014; 89: 12–17.

    Article  CAS  PubMed  Google Scholar 

  23. Lee J, Zhou P . Pathogenic role of the CRL4 ubiquitin ligase in human disease. Front Oncol 2012; 2: 21.

    PubMed  PubMed Central  Google Scholar 

  24. Stern HM . Improving treatment of HER2-positive cancers: opportunities and challenges. Sci Transl Med 2012; 4: 127rv122.

    Article  Google Scholar 

  25. Gravalos C, Jimeno A . HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 2008; 19: 1523–1529.

    Article  CAS  PubMed  Google Scholar 

  26. Qi M, Yang X, Zhang F, Lin T, Sun X, Li Y et al. ERG rearrangement is associated with prostate cancer-related death in Chinese prostate cancer patients. PLoS One 2014; 9: e84959.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010; 376: 687–697.

    Article  CAS  PubMed  Google Scholar 

  28. Liu HT, Xing AY, Chen X, Ma RR, Wang YW, Shi DB et al. MicroRNA-27b, microRNA-101 and microRNA-128 inhibit angiogenesis by down-regulating vascular endothelial growth factor C expression in gastric cancers. Oncotarget 2015; 6: 37458–37470.

    PubMed  PubMed Central  Google Scholar 

  29. Wang L, Li Y, Yang X, Yuan H, Li X, Qi M et al. ERG-SOX4 interaction promotes epithelial-mesenchymal transition in prostate cancer cells. Prostate 2014; 74: 647–658.

    Article  CAS  PubMed  Google Scholar 

  30. Wang L, Song G, Tan W, Qi M, Zhang L, Chan J et al. MiR-573 inhibits prostate cancer metastasis by regulating epithelial-mesenchymal transition. Oncotarget 2015; 6: 35978–35990.

    PubMed  PubMed Central  Google Scholar 

  31. Wang C, Wang L, Su B, Lu N, Song J, Yang X et al. Serine protease inhibitor Kazal type 1 promotes epithelial-mesenchymal transition through EGFR signaling pathway in prostate cancer. Prostate 2014; 74: 689–701.

    Article  CAS  PubMed  Google Scholar 

  32. Chen RS, Song YM, Zhou ZY, Tong T, Li Y, Fu M et al. Disruption of xCT inhibits cancer cell metastasis via the caveolin-1/beta-catenin pathway. Oncogene 2009; 28: 599–609.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X et al. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. Elife 2016; 5: e10727.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


We thank Baichun Jiang for technical assistance. This work was supported by National Natural Science Foundation of China (Grants No. 81672554 and 81472417 to BH, 31371369 and 31671427 to YZ).

Author information

Authors and Affiliations


Corresponding author

Correspondence to B Han.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Jiao, M., Li, X. et al. CUL4B promotes gastric cancer invasion and metastasis-involvement of upregulation of HER2. Oncogene 37, 1075–1085 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links