Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deletion of Menin in craniofacial osteogenic cells in mice elicits development of mandibular ossifying fibroma

Abstract

Ossifying fibroma (OF) is a rare benign tumor of the craniofacial bones that can reach considerable and disfiguring dimensions if left untreated. Although the clinicopathological characteristics of OF are well established, the underlying etiology has remained largely unknown. Our work indicates that Men1—a tumor suppressor gene responsible of Multiple endocrine neoplasia type 1—is critical for OF formation and shows that mice with targeted disruption of Men1 in osteoblasts (Men1Runx2Cre) develop multifocal OF in the mandible with a 100% penetrance. Using lineage-tracing analysis, we demonstrate that loss of Men1 arrests stromal osteoprogenitors in OF at the osterix-positive pre-osteoblastic differentiation stage. Analysis of Men1-lacking stromal spindle cells isolated from OF (OF-derived MSCs (OFMSCs)) revealed a downregulation of the cyclin-dependent kinase (CDK) inhibitor Cdkn1a, consistent with an increased proliferation rate. Intriguingly, the re-expression of Men1 in Men1-deficient OFMSCs restored Cdkn1a expression and abrogated cellular proliferation supporting the tumor-suppressive role of Men1 in OF. Although our work presents the first evidence of Men1 in OF development, it further provides the first genetic mouse model of OF that can be used to better understand the molecular pathogenesis of these benign tumors and to potentially develop novel treatment strategies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Liu Y, Wang H, You M, Yang Z, Miao J, Shimizutani K et al. Ossifying fibromas of the jaw bone: 20 cases. Dentomaxillofac Radiol 2010; 39: 57–63.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Woo SB . Central cemento-ossifying fibroma: primary odontogenic or osseous neoplasm? J Oral Maxillofac Surg 2015; 73: S87–S93.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    El-Mofty SK NB, Toyosawa S . Ossifying fibroma. In: El-Naggar AK CJ, Grandis JR, Takata T, Slootweg PJ (eds). WHO Classification of Head and Neck Tumours. IARC Press, 2017, pp 251–252.

    Google Scholar 

  4. 4

    Franco-Barrera MJ, Zavala-Cerna MG, Fernández-Tamayo R, Vivanco-Pérez I, Fernández-Tamayo NM, Torres-Bugarín O . An update on peripheral ossifying fibroma: case report and literature review. Oral Maxillofac Surg 2016; 20: 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Waldron CA, Giansanti JS . Benign fibro-osseous lesions of the jaws: a clinical-radiologic-histologic review of sixty-five cases. II. Benign fibro-osseous lesions of periodontal ligament origin. Oral Surg Oral Med Oral Pathol 1973; 35: 340–350.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Trijolet JP, Parmentier J, Sury F, Goga D, Mejean N, Laure B . Cemento-ossifying fibroma of the mandible. Eur Ann Otorhinolaryngol Head Neck Dis 2011; 128: 30–33.

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Qin H, Qu C, Yamaza T, Yang R, Lin X, Duan XY et al. Ossifying fibroma tumor stem cells are maintained by epigenetic regulation of a TSP1/TGF-beta/SMAD3 autocrine loop. Cell Stem Cell 2013; 13: 577–589.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Toyosawa S, Yuki M, Kishino M, Ogawa Y, Ueda T, Murakami S et al. Ossifying fibroma vs fibrous dysplasia of the jaw: molecular and immunological characterization. Mod Pathol 2007; 20: 389–396.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Falchetti A, Marini F, Luzi E, Giusti F, Cavalli L, Cavalli T et al. Multiple endocrine neoplasia type 1 (MEN1): not only inherited endocrine tumors. Genet Med 2009; 11: 825–835.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Chandrasekharappa SC, Guru SC, Manickam P, Olufemi SE, Collins FS, Emmert-Buck MR et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404–407.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Lemmens I, Van de Ven WJ, Kas K, Zhang CX, Giraud S, Wautot V et al. Identification of the multiple endocrine neoplasia type 1 (MEN1) gene. The European Consortium on MEN1. Hum Mol Genet 1997; 6: 1177–1183.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Matkar S, Thiel A, Hua X . Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci 2013; 38: 394–402.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Schnepp RW, Chen YX, Wang H, Cash T, Silva A, Diehl JA et al. Mutation of tumor suppressor gene Men1 acutely enhances proliferation of pancreatic islet cells. Cancer Res 2006; 66: 5707–5715.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kottemann MC, Bale AE . Characterization of DNA damage-dependent cell cycle checkpoints in a menin-deficient model. DNA Rep 2009; 8: 944–952.

    CAS  Article  Google Scholar 

  15. 15

    Kanazawa I, Canaff L, Abi Rafeh J, Angrula A, Li J, Riddle RC et al. Osteoblast menin regulates bone mass in vivo. J Biol Chem 2015; 290: 3910–3924.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Liu P, Lee S, Knoll J, Rauch A, Ostermay S, Luther J et al. Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ 2017; 24: 672–682 1-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Bertolino P, Tong WM, Herrera PL, Casse H, Zhang CX, Wang ZQ . Pancreatic beta-cell-specific ablation of the multiple endocrine neoplasia type 1 (MEN1) gene causes full penetrance of insulinoma development in mice. Cancer Res 2003; 63: 4836–4841.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab 2010; 11: 517–531.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Rodda SJ, McMahon AP . Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 2006; 133: 3231–3244.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Fauquier T, Chatonnet F, Picou F, Richard S, Fossat N, Aguilera N et al. Purkinje cells and Bergmann glia are primary targets of the TRalpha1 thyroid hormone receptor during mouse cerebellum postnatal development. Development 2014; 141: 166–175.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 2001; 1: 4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Bhasin M, Bhasin V, Bhasin A . Peripheral ossifying fibroma. Case Rep Dent 2013; 2013: 497234.

    PubMed  PubMed Central  Google Scholar 

  23. 23

    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149–155.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Karnik SK, Hughes CM, Gu X, Rozenblatt-Rosen O, McLean GW, Xiong Y et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc Natl Acad Sci USA 2005; 102: 14659–14664.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Milne TA, Hughes CM, Lloyd R, Yang Z, Rozenblatt-Rosen O, Dou Y et al. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc Natl Acad Sci USA 2005; 102: 749–754.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Houlihan DD, Mabuchi Y, Morikawa S, Niibe K, Araki D, Suzuki S et al. Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-alpha. Nat Protoc 2012; 7: 2103–2111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Eversole R, Su L, ElMofty S . Benign fibro-osseous lesions of the craniofacial complex. A review. Head Neck Pathol 2008; 2: 177–202.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Ramaesh T, Bard JB . The growth and morphogenesis of the early mouse mandible: a quantitative analysis. J Anat 2003; 203: 213–222.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Yang YJ, Song TY, Park J, Lee J, Lim J, Jang H et al. Menin mediates epigenetic regulation via histone H3 lysine 9 methylation. Cell Death Dis 2013; 4: e583.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Zhang H, Zhao X, Zhang Z, Chen W, Zhang X . An immunohistochemistry study of Sox9, Runx2, and Osterix expression in the mandibular cartilages of newborn mouse. Biomed Res Int 2013; 2013: : 265380.

    Google Scholar 

  31. 31

    Papagerakis P, Mitsiadis T . Ch.109. Development and Structure of Teeth and Periodontal Tissues, 8th edn. John Wiley & Sons Inc.: Danvers, USA, 2013.

    Google Scholar 

  32. 32

    Shibata S, Yokohama-Tamaki T . An in situ hybridization study of Runx2, Osterix, and Sox9 in the anlagen of mouse mandibular condylar cartilage in the early stages of embryogenesis. J Anat 2008; 213: 274–283.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Engleka KA, Wu M, Zhang M, Antonucci NB, Epstein JA . Menin is required in cranial neural crest for palatogenesis and perinatal viability. Dev Biol 2007; 311: 524–537.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Joyce JA, Pollard JW . Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9: 239–252.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Bianco P, Robey PG, Simmons PJ . Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2008; 2: 313–319.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Park D, Spencer JA, Koh BI, Kobayashi T, Fujisaki J, Clemens TL et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 2012; 10: 259–272.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH et al. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc 2008; 40: 2649–2654.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Morikawa S, Mabuchi Y, Kubota Y, Nagai Y, Niibe K, Hiratsu E et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 2009; 206: 2483–2496.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K et al. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 2010; 33: 387–399.

    CAS  Article  Google Scholar 

  40. 40

    Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Zhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ . Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 2014; 15: 154–168.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 2015; 160: 269–284.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Ono N, Ono W, Nagasawa T, Kronenberg HM . A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol 2014; 16: 1157–U1173.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Chan CKF, Seo EY, Chen JY, Lo D, McArdle A, Sinha R et al. Identification and specification of the mouse skeletal stem cell. Cell 2015; 160: 285–298.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Pinho S, Lacombe J, Hanoun M, Mizoguchi T, Bruns I, Kunisaki Y et al. PDGFRalpha and CD51 mark human nestin+ sphere-forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med 2013; 210: 1351–1367.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 2014; 29: 340–349.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Kim YS, Burns AL, Goldsmith PK, Heppner C, Park SY, Chandrasekharappa SC et al. Stable overexpression of MEN1 suppresses tumorigenicity of RAS. Oncogene 1999; 18: 5936–5942.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Darling TN, Skarulis MC, Steinberg SM, Marx SJ, Spiegel AM, Turner M . Multiple facial angiofibromas and collagenomas in patients with multiple endocrine neoplasia type 1. Arch Dermatol 1997; 133: 853–857.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Yadav R, Gulati A . Peripheral ossifying fibroma: a case report. J Oral Sci 2009; 51: 151–154.

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Isakov O, Rinella ES, Olchovsky D, Shimon I, Ostrer H, Shomron N et al. Missense mutation in the MEN1 gene discovered through whole exome sequencing co-segregates with familial hyperparathyroidism. Genet Res 2013; 95: 114–120.

    CAS  Article  Google Scholar 

  51. 51

    Jackson CE, Norum RA, Boyd SB, Talpos GB, Wilson SD, Taggart RT et al. Hereditary hyperparathyroidism and multiple ossifying jaw fibromas: a clinically and genetically distinct syndrome. Surgery 1990; 108: 1006–1012, discussion 1012-1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Kassem M, Zhang X, Brask S, Eriksen EF, Mosekilde L, Kruse TA . Familial isolated primary hyperparathyroidism. Clin Endocrinol 1994; 41: 415–420.

    CAS  Article  Google Scholar 

  53. 53

    Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2013; 28: 2–17.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54

    Yamaza T, Ren G, Akiyama K, Chen C, Shi Y, Shi S . Mouse mandible contains distinctive mesenchymal stem cells. J Dent Res 2011; 90: 317–324.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29: e45.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Gherardi S, Ripoche D, Mikaelian I, Chanal M, Teinturier R, Goehrig D et al. Menin regulates Inhbb expression through an Akt/Ezh2-mediated H3K27 histone modification. Biochim Biophys Acta 2017; 1860: 427–437.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the staff of the animal facilities of the University of Ulm, led by Dr Petra Kirsch and in particular to Tobias Rappold. We thank Professor Dr Volker Rasche from the Core Facility Animal MRI, Ulm University and Dr Markus Rojewsky from the Institut für Transfusionsmedizin Universitätsklinikum Ulm. We thank Dr Merle Stein and Dr Giorgio Caratti for critical reading of the manuscript. This study was supported by the Boehringer Ingelheim Foundation (to JT), Deutsche Forschungsgemeinschaft (DFG, Priority Program Immunobone 1468, Tu 220/6-1, 6-2, Collaborative Research Centre 1149, C02/INST 40/492-1, Trilateral Consortium Tu 220/12-1 to JT) and the Leibniz Graduate School of Ageing from Fritz Lipmann Institute Jena (to SL).

Author contributions

SL, PL, RT, MT, JK, AT, RW, SH, DB and LF performed experiments, analyzed data and wrote the paper. SV, PB, CZ and JT analyzed data and wrote the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J Tuckermann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Liu, P., Teinturier, R. et al. Deletion of Menin in craniofacial osteogenic cells in mice elicits development of mandibular ossifying fibroma. Oncogene 37, 616–626 (2018). https://doi.org/10.1038/onc.2017.364

Download citation

Further reading

Search

Quick links