Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia

Abstract

Acute myeloid leukemia (AML) is a disease associated with epigenetic dysregulation. 11q23 translocations involving the H3K4 methyltransferase MLL1 (KMT2A) generate oncogenic fusion proteins with deregulated transcriptional potential. The polymerase-associated factor complex (PAFc) is an epigenetic co-activator complex that makes direct contact with MLL fusion proteins and is involved in AML, however, its functions are not well understood. Here, we explored the transcriptional targets regulated by the PAFc that facilitate leukemia by performing RNA-sequencing after conditional loss of the PAFc subunit Cdc73. We found Cdc73 promotes expression of an early hematopoietic progenitor gene program that prevents differentiation. Among the target genes, we confirmed the protein arginine methyltransferase Prmt5 is a direct target that is positively regulated by a transcriptional unit that includes the PAFc, MLL1, HOXA9 and STAT5 in leukemic cells. We observed reduced PRMT5-mediated H4R3me2s following excision of Cdc73 placing this histone modification downstream of the PAFc and revealing a novel mechanism between the PAFc and Prmt5. Knockdown or pharmacologic inhibition of Prmt5 causes a G1 arrest and reduced proliferation resulting in extended leukemic disease latency in vivo. Overall, we demonstrate the PAFc regulates Prmt5 to facilitate leukemic progression and is a potential therapeutic target for AMLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Miller CA, Wilson RK, Ley TJ . Genomic landscapes and clonality of de novo AML. N Engl J Med 2013; 369: 1473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Milne TA, Kim J, Wang GG, Stadler SC, Basrur V, Whitcomb SJ et al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis. Mol Cell 2010; 38: 853–863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Muntean AG, Chen W, Jones M, Granowicz EM, Maillard I, Hess JL . MLL fusion protein-driven AML is selectively inhibited by targeted disruption of the MLL-PAFc interaction. Blood 2013; 122: 1914–1922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA et al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 2010; 17: 609–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carpten JD, Robbins CM, Villablanca A, Forsberg L, Presciuttini S, Bailey-Wilson J et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 2002; 32: 676–680.

    Article  CAS  PubMed  Google Scholar 

  6. Hanks S, Perdeaux ER, Seal S, Ruark E, Mahamdallie SS, Murray A et al. Germline mutations in the PAF1 complex gene CTR9 predispose to Wilms tumour. Nat Commun 2014; 5: 4398.

    Article  CAS  PubMed  Google Scholar 

  7. Moniaux N, Nemos C, Schmied BM, Chauhan SC, Deb S, Morikane K et al. The human homologue of the RNA polymerase II-associated factor 1 (hPaf1), localized on the 19q13 amplicon, is associated with tumorigenesis. Oncogene 2006; 25: 3247–3257.

    Article  CAS  PubMed  Google Scholar 

  8. Zeng H, Xu W . Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERalpha-positive breast tumorigenesis. Genes Dev 2015; 29: 2153–2167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim J, Guermah M, Roeder RG . The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell 2010; 140: 491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mueller CL, Jaehning JA . Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol 2002; 22: 1971–1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wade PA, Werel W, Fentzke RC, Thompson NE, Leykam JF, Burgess RR et al. A novel collection of accessory factors associated with yeast RNA polymerase II. Protein Expr Purif 1996; 8: 85–90.

    Article  CAS  PubMed  Google Scholar 

  12. Jaehning JA . The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim Biophys Acta 2010; 1799: 379–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomson BN, Arndt KM . The many roles of the conserved eukaryotic Paf1 complex in regulating transcription, histone modifications, and disease states. Biochim Biophys Acta 2013; 1829: 116–126.

    Article  CAS  PubMed  Google Scholar 

  14. He N, Chan CK, Sobhian B, Chou S, Xue Y, Liu M et al. Human polymerase-associated factor complex (PAFc) connects the super elongation complex (SEC) to RNA polymerase II on chromatin. Proc Natl Acad Sci USA 2011; 108: E636–E645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S . Transitions in RNA polymerase II elongation complexes at the 3' ends of genes. EMBO J 2004; 23: 354–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell 2006; 125: 703–717.

    Article  CAS  PubMed  Google Scholar 

  17. Qiu H, Hu C, Wong CM, Hinnebusch AG . The Spt4p subunit of yeast DSIF stimulates association of the Paf1 complex with elongating RNA polymerase II. Mol Cell Biol 2006; 26: 3135–3148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 2009; 137: 459–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Oss SB, Shirra MK, Bataille AR, Wier AD, Yen K, Vinayachandran V et al. The histone modification domain of Paf1 complex subunit Rtf1 directly stimulates H2B ubiquitylation through an interaction with Rad6. Mol Cell 2016; 64: 815–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol Cell 2003; 11: 721–729.

    Article  CAS  PubMed  Google Scholar 

  21. Daser A, Rabbitts TH . The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005; 15: 175–188.

    Article  CAS  PubMed  Google Scholar 

  22. Aplan PD . Chromosomal translocations involving the MLL gene: molecular mechanisms. DNA Repair (Amst) 2006; 5: 1265–1272.

    Article  CAS  Google Scholar 

  23. Chaudhary K, Deb S, Moniaux N, Ponnusamy MP, Batra SK . Human RNA polymerase II-associated factor complex: dysregulation in cancer. Oncogene 2007; 26: 7499–7507.

    Article  CAS  PubMed  Google Scholar 

  24. Collins CT, Hess JL . Role of HOXA9 in leukemia: dysregulation, cofactors and essential targets. Oncogene 2016; 35: 1090–1098.

    Article  CAS  PubMed  Google Scholar 

  25. Girardot M, Hirasawa R, Kacem S, Fritsch L, Pontis J, Kota SK et al. PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G+C-rich regions of the mouse genome. Nucleic Acids Res 2014; 42: 235–248.

    Article  CAS  PubMed  Google Scholar 

  26. Migliori V, Muller J, Phalke S, Low D, Bezzi M, Mok WC et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 2012; 19: 136–144.

    Article  CAS  PubMed  Google Scholar 

  27. Pal S, Vishwanath SN, Erdjument-Bromage H, Tempst P, Sif S . Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 2004; 24: 9630–9645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mongiardi MP, Savino M, Bartoli L, Beji S, Nanni S, Scagnoli F et al. Myc and Omomyc functionally associate with the protein arginine methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep 2015; 5: 15494.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang B, Dong S, Li Z, Lu L, Zhang S, Chen X et al. Targeting protein arginine methyltransferase 5 inhibits human hepatocellular carcinoma growth via the downregulation of beta-catenin. J Transl Med 2015; 13: 349.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu F, Cheng G, Hamard PJ, Greenblatt S, Wang L, Man N et al. Arginine methyltransferase PRMT5 is essential for sustaining normal adult hematopoiesis. J Clin Invest 2015; 125: 3532–3544.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chan-Penebre E, Kuplast KG, Majer CR, Boriack-Sjodin PA, Wigle TJ, Johnston LD et al. A selective inhibitor of PRMT5 with in vivo and in vitro potency in MCL models. Nat Chem Biol 2015; 11: 432–437.

    Article  CAS  PubMed  Google Scholar 

  32. Jin Y, Zhou J, Xu F, Jin B, Cui L, Wang Y et al. Targeting methyltransferase PRMT5 eliminates leukemia stem cells in chronic myelogenous leukemia. J Clin Invest 2016; 126: 3961–3980.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Chitnis N, Nakagawa H, Kita Y, Natsugoe S, Yang Y et al. PRMT5 is required for lymphomagenesis triggered by multiple oncogenic drivers. Cancer Discov 2015; 5: 288–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pal S, Baiocchi RA, Byrd JC, Grever MR, Jacob ST, Sif S . Low levels of miR-92b/96 induce PRMT5 translation and H3R8/H4R3 methylation in mantle cell lymphoma. EMBO J 2007; 26: 3558–3569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laslo P, Spooner CJ, Warmflash A, Lancki DW, Lee HJ, Sciammas R et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 2006; 126: 755–766.

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Schmitt A, Reinhardt P, Greiner J, Ringhoffer M, Vaida B et al. Reconstitution of CD40 and CD80 in dendritic cells generated from blasts of patients with acute myeloid leukemia. Cancer Immun 2003; 3: 8.

    CAS  PubMed  Google Scholar 

  37. Chen FX, Woodfin AR, Gardini A, Rickels RA, Marshall SA, Smith ER et al. PAF1, a molecular regulator of promoter-proximal pausing by RNA polymerase II. Cell 2015; 162: 1003–1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen CW, Koche RP, Sinha AU, Deshpande AJ, Zhu N, Eng R et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med 2015; 21: 335–343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia-Cuellar MP, Buttner C, Bartenhagen C, Dugas M, Slany RK . Leukemogenic MLL-ENL fusions induce alternative chromatin states to drive a functionally dichotomous group of target genes. Cell Rep 2016; 15: 310–322.

    Article  CAS  PubMed  Google Scholar 

  40. Yu M, Yang W, Ni T, Tang Z, Nakadai T, Zhu J et al. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Science 2015; 350: 1383–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheung N, Fung TK, Zeisig BB, Holmes K, Rane JK, Mowen KA et al. Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell 2016; 29: 32–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vu LP, Perna F, Wang L, Voza F, Figueroa ME, Tempst P et al. PRMT4 blocks myeloid differentiation by assembling a methyl-RUNX1-dependent repressor complex. Cell Rep 2013; 5: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A et al. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 2014; 25: 21–36.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dey P, Ponnusamy MP, Deb S, Batra SK . Human RNA polymerase II-association factor 1 (hPaf1/PD2) regulates histone methylation and chromatin remodeling in pancreatic cancer. PLoS One 2011; 6: e26926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Penheiter KL, Washburn TM, Porter SE, Hoffman MG, Jaehning JA . A posttranscriptional role for the yeast Paf1-RNA polymerase II complex is revealed by identification of primary targets. Mol Cell 2005; 20: 213–223.

    Article  CAS  PubMed  Google Scholar 

  46. Huang Y, Sitwala K, Bronstein J, Sanders D, Dandekar M, Collins C et al. Identification and characterization of Hoxa9 binding sites in hematopoietic cells. Blood 2012; 119: 388–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kryukov GV, Wilson FH, Ruth JR, Paulk J, Tsherniak A, Marlow SE et al. MTAP deletion confers enhanced dependency on the PRMT5 arginine methyltransferase in cancer cells. Science 2016; 351: 1214–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marjon K, Cameron MJ, Quang P, Clasquin MF, Mandley E, Kunii K et al. MTAP deletions in cancer create vulnerability to targeting of the MAT2A/PRMT5/RIOK1 axis. Cell Rep 2016; 15: 574–587.

    Article  CAS  PubMed  Google Scholar 

  49. Newey PJ, Bowl MR, Cranston T, Thakker RV . Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 2010; 31: 295–307.

    Article  CAS  PubMed  Google Scholar 

  50. Bandyopadhyay S, Harris DP, Adams GN, Lause GE, McHugh A, Tillmaand EG et al. HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules. Mol Cell Biol 2012; 32: 1202–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tee WW, Pardo M, Theunissen TW, Yu L, Choudhary JS, Hajkova P et al. Prmt5 is essential for early mouse development and acts in the cytoplasm to maintain ES cell pluripotency. Genes Dev 2010; 24: 2772–2777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wei H, Wang B, Miyagi M, She Y, Gopalan B, Huang DB et al. PRMT5 dimethylates R30 of the p65 subunit to activate NF-kappaB. Proc Natl Acad Sci USA 2013; 110: 13516–13521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tarighat SS, Santhanam R, Frankhouser D, Radomska HS, Lai H, Anghelina M et al. The dual epigenetic role of PRMT5 in acute myeloid leukemia: gene activation and repression via histone arginine methylation. Leukemia 2016; 30: 789–799.

    Article  CAS  PubMed  Google Scholar 

  54. Yang H, Zhao X, Zhao L, Liu L, Li J, Jia W et al. PRMT5 competitively binds to CDK4 to promote G1-S transition upon glucose induction in hepatocellular carcinoma. Oncotarget 2016; 7: 72131–72147.

    PubMed  PubMed Central  Google Scholar 

  55. Youn MY, Yoo HS, Kim MJ, Hwang SY, Choi Y, Desiderio SV et al. hCTR9, a component of Paf1 complex, participates in the transcription of interleukin 6-responsive genes through regulation of STAT3-DNA interactions. J Biol Chem 2007; 282: 34727–34734.

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, Bedford MT . Protein arginine methyltransferases and cancer. Nat Rev Cancer 2013; 13: 37–50.

    Article  CAS  PubMed  Google Scholar 

  57. Cheung N, Chan LC, Thompson A, Cleary ML, So CW . Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol 2007; 9: 1208–1215.

    Article  CAS  PubMed  Google Scholar 

  58. Shia WJ, Okumura AJ, Yan M, Sarkeshik A, Lo MC, Matsuura S et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 2012; 119: 4953–4962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang L, Pal S, Sif S . Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol 2008; 28: 6262–6277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pawlak MR, Scherer CA, Chen J, Roshon MJ, Ruley HE . Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol Cell Biol 2000; 20: 4859–4869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yadav N, Lee J, Kim J, Shen J, Hu MC, Aldaz CM et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc Natl Acad Sci USA 2003; 100: 6464–6468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen L, Chen W, Mysliwski M, Serio J, Ropa J, Abulwerdi FA et al. Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition. Leukemia 2015; 29: 1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zuber J, McJunkin K, Fellmann C, Dow LE, Taylor MJ, Hannon GJ et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat Biotechnol 2011; 29: 79–83.

    Article  CAS  PubMed  Google Scholar 

  64. Chen L, Sun Y, Wang J, Jiang H, Muntean AG . Differential regulation of the c-Myc/Lin28 axis discriminates subclasses of rearranged MLL leukemia. Oncotarget 2016; 7: 25208–25223.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Dong-Er Zhang (UCSD), Dr Wei Xu (University of Wisconsin), Dr Jean-Francois Rual and Dr Tao Xu (University of Michigan) for providing the Prmt1, Prmt4 and Prmt5 constructs, respectively, Dr Yali Dou (University of Michigan) for the MLLc antibody. This work was supported by NIH grants R00 CA158136 (AGM), an American Society of Hematology Scholar Award (AGM), a Leukemia Research Foundation award (AGM), an American Cancer Society Scholar Award RSG-15-046 (AGM) and Children’s Leukemia Research Association (AGM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Muntean.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serio, J., Ropa, J., Chen, W. et al. The PAF complex regulation of Prmt5 facilitates the progression and maintenance of MLL fusion leukemia. Oncogene 37, 450–460 (2018). https://doi.org/10.1038/onc.2017.337

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.337

This article is cited by

Search

Quick links