Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer

Abstract

Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1

    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359–E386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Early Breast Cancer Trialists' Collaborative G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687–1717.

    Article  Google Scholar 

  5. 5

    Jordan VC, O'Malley BW . Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol 2007; 25: 5815–5824.

    CAS  Article  Google Scholar 

  6. 6

    Robertson JF . ICI 182,780 (Fulvestrant)—the first oestrogen receptor down-regulator—current clinical data. Br J Cancer 2001; 85 (Suppl 2): 11–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Osborne CK, Schiff R . Mechanisms of endocrine resistance in breast cancer. Annu Rev Med 2011; 62: 233–247.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Mayer IA, Abramson VG, Lehmann BD, Pietenpol JA . New strategies for triple-negative breast cancer—deciphering the heterogeneity. Clin Cancer Res 2014; 20: 782–790.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Rimawi MF, Schiff R, Osborne CK . Targeting HER2 for the treatment of breast cancer. Annu Rev Med 2015; 66: 111–128.

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Tonjes M, Barbus S, Park YJ, Wang W, Schlotter M, Lindroth AM et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat Med 2013; 19: 901–908.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Zhou W, Feng X, Li H, Wang L, Li H, Zhu B et al. Functional evidence for a nasopharyngeal carcinoma-related gene BCAT1 located at 12p12. Oncol Res 2007; 16: 405–413.

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Frogne T, Benjaminsen RV, Sonne-Hansen K, Sorensen BS, Nexo E, Laenkholm AV et al. Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Res Treat 2009; 114: 263–275.

    CAS  Article  Google Scholar 

  13. 13

    Thrane S, Lykkesfeldt AE, Larsen MS, Sorensen BS, Yde CW . Estrogen receptor alpha is the major driving factor for growth in tamoxifen-resistant breast cancer and supported by HER/ERK signaling. Breast Cancer Res Treat 2013; 139: 71–80.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Gonzalez-Malerva L, Park J, Zou L, Hu Y, Moradpour Z, Pearlberg J et al. High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc Natl Acad Sci USA 2011; 108: 2058–2063.

    Article  PubMed  Google Scholar 

  15. 15

    Zhang Y, Sieuwerts AM, McGreevy M, Casey G, Cufer T, Paradiso A et al. The 76-gene signature defines high-risk patients that benefit from adjuvant tamoxifen therapy. Breast Cancer Res Treat 2009; 116: 303–309.

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  17. 17

    Lu X, Lu X, Wang ZC, Iglehart JD, Zhang X, Richardson AL . Predicting features of breast cancer with gene expression patterns. Breast Cancer Res Treat 2008; 108: 191–201.

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Al Saleh S, Al Mulla F, Luqmani YA . Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS One 2011; 6: e20610.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lykkesfeldt AE, Madsen MW, Briand P . Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164384 and ICI 182780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res 1994; 54: 1587–1595.

    CAS  Google Scholar 

  20. 20

    Lykkesfeldt AE, Larsen SS, Briand P . Human breast cancer cell lines resistant to pure anti-estrogens are sensitive to tamoxifen treatment. Int J Cancer 1995; 61: 529–534.

    CAS  Article  Google Scholar 

  21. 21

    Zschocke J, Hoffmann GF Vademecum Metabolicum. Friedrichsdorf: Schattauer; 2004. 164 p.

  22. 22

    Prest SJ, Rees RC, Murdoch C, Marshall JF, Cooper PA, Bibby M et al. Chemokines induce the cellular migration of MCF-7 human breast carcinoma cells: subpopulations of tumour cells display positive and negative chemotaxis and differential in vivo growth potentials. Clin Exp Metastasis 1999; 17: 389–396.

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Nagaraja GM, Othman M, Fox BP, Alsaber R, Pellegrino CM, Zeng Y et al. Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics. Oncogene 2006; 25: 2328–2338.

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L . Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol 2012; 9: 16–32.

    CAS  Article  Google Scholar 

  25. 25

    Possemato R, Marks KM, Shaul YD, Pacold ME, Kim D, Birsoy K et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011; 476: 346–350.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Mishra P, Ambs S . Metabolic signatures of human breast cancer. Mol Cell Oncol 2015; 2: e992217-1–e992217-10.

    Google Scholar 

  27. 27

    DeSantiago S, Torres N, Hutson S, Tovar AR . Induction of expression of branched-chain aminotransferase and alpha-keto acid dehydrogenase in rat tissues during lactation. Adv Exp Med Biol 2001; 501: 93–99.

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Coser KR, Wittner BS, Rosenthal NF, Collins SC, Melas A, Smith SL et al. Antiestrogen-resistant subclones of MCF-7 human breast cancer cells are derived from a common monoclonal drug-resistant progenitor. Proc Natl Acad Sci USA 2009; 106: 14536–14541.

    CAS  Article  Google Scholar 

  29. 29

    Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 2015; 21: 751–759.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Rodriguez S, Jafer O, Goker H, Summersgill BM, Zafarana G, Gillis AJ et al. Expression profile of genes from 12p in testicular germ cell tumors of adolescents and adults associated with i(12p) and amplification at 12p11.2-p12.1. Oncogene 2003; 22: 1880–1891.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Shajahan-Haq AN, Cook KL, Schwartz-Roberts JL, Eltayeb AE, Demas DM, Warri AM et al. MYC regulates the unfolded protein response and glucose and glutamine uptake in endocrine resistant breast cancer. Mol Cancer 2014; 13: 239.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 2013; 24: 450–465.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Hull J, Hindy ME, Kehoe PG, Chalmers K, Love S, Conway ME . Distribution of the branched chain aminotransferase proteins in the human brain and their role in glutamate regulation. J Neurochem 2012; 123: 997–1009.

    CAS  Article  PubMed  Google Scholar 

  34. 34

    Hutson S . Structure and function of branched chain aminotransferases. Prog Nucleic Acid Res Mol Biol 2001; 70: 175–206.

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Zong WX, Rabinowitz JD, White E . Mitochondria and cancer. Mol Cell 2016; 61: 667–676.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Knudsen ES, Knudsen KE . Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 2008; 8: 714–724.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Mihaylova MM, Shaw RJ . The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 2011; 13: 1016–1023.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Peyton KJ, Liu XM, Yu Y, Yates B, Durante W . Activation of AMP-activated protein kinase inhibits the proliferation of human endothelial cells. J Pharmacol Exp Ther 2012; 342: 827–834.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Yoshikawa R, Yanagi H, Shen CS, Fujiwara Y, Noda M, Yagyu T et al. ECA39 is a novel distant metastasis-related biomarker in colorectal cancer. World J Gastroenterol 2006; 12: 5884–5889.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Chang IW, Wu WJ, Wang YH, Wu TF, Liang PI, He HL et al. BCAT1 overexpression is an indicator of poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. Histopathology 2015; 68: 520–532.

    Article  PubMed  Google Scholar 

  41. 41

    Ju W, Yoo BC, Kim IJ, Kim JW, Kim SC, Lee HP . Identification of genes with differential expression in chemoresistant epithelial ovarian cancer using high-density oligonucleotide microarrays. Oncol Res 2009; 18: 47–56.

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Harvell DM, Spoelstra NS, Singh M, McManaman JL, Finlayson C, Phang T et al. Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Res Treat 2008; 112: 475–488.

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Ananieva EA, Patel CH, Drake CH, Powell JD, Hutson SM . Cytosolic branched chain aminotransferase (BCATc) regulates mTORC1 signaling and glycolytic metabolism in CD4+ T cells. J Biol Chem 2014; 289: 18793–18804.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Chaumeil MM, Larson PE, Woods SM, Cai L, Eriksson P, Robinson AE et al. Hyperpolarized [1-13C] glutamate: a metabolic imaging biomarker of IDH1 mutational status in glioma. Cancer Res 2014; 74: 4247–4257.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Briand P, Lykkesfeldt AE . Effect of estrogen and antiestrogen on the human breast cancer cell line MCF-7 adapted to growth at low serum concentration. Cancer Res 1984; 44: 1114–1119.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Castro F, Dirks WG, Fahnrich S, Hotz-Wagenblatt A, Pawlita M, Schmitt M . High-throughput SNP-based authentication of human cell lines. Int J Cancer 2013; 132: 308–314.

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Heck S, Rom J, Thewes V, Becker N, Blume B, Sinn HP et al. Estrogen-related receptor alpha expression and function is associated with the transcriptional coregulator AIB1 in breast carcinoma. Cancer Res 2009; 69: 5186–5193.

    CAS  Article  PubMed  Google Scholar 

  48. 48

    Thewes V, Simon R, Schroeter P, Schlotter M, Anzeneder T, Buttner R et al. Reprogramming of the ERRalpha and ERalpha target gene landscape triggers tamoxifen resistance in breast cancer. Cancer Res 2015; 75: 720–731.

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Waldmann A, Anzeneder T, Katalinic A . Patients and methods of the PATH Biobank - a resource for breast cancer research. Geburtshilfe und Frauenheilkunde 2014; 74: 361–369.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Ruiz C, Seibt S, Al Kuraya K, Siraj AK, Mirlacher M, Schraml P et al. Tissue microarrays for comparing molecular features with proliferation activity in breast cancer. Int J Cancer 2006; 118: 2190–2194.

    CAS  Article  PubMed  Google Scholar 

  51. 51

    Goldhirsch A, Winer EP, Coates AS, Gelber RD, Piccart-Gebhart M, Thurlimann B et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 2013; 24: 2206–2223.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We highly appreciate the excellent technical assistance of Karin Pfleger and Achim Stephan. Further, we thank Nicolas Hafner and Yashna Paul for experimental and computational support and appreciate the help and constructive discussions from Martina Seiffert, and Michael Fletcher. Moreover, we thank the patients, pathologists and gynecologists associated with the PATH Biobank (http://path-biobank.org/index.php/en/) for their support. This work was supported by the Strategic Alliance of Bayer Healthcare and the German Cancer Research Center (DKFZ). VT was supported by a scholarship from the Helmholtz-Graduate School for Cancer Research.

Author contributions

VT, MH, UD, AS, SH, AEL, MZ, BR, PL and MT conceived the project and designed the experiments. VT, MS, PS and MT performed in vitro experiments. YW and WW conducted MassARRAY analyses. KS and JGO conducted mass spectrometry analyses. TA, NM, RB, HPS, AS and GS provided and evaluated tumor specimens and clinical data. VT, RS, NM, HPS, AS, RB and MZ generated and analyzed clinical data. MH, MZ and RS performed computational analyses. MS prepared lentiviral particles with help of PW, SK and HH-S conducted animal experiments. PS and MK prepared xenograft sections with the help of NK. VT, UD, SH, MZ, BR, PL and MT analyzed data and wrote the manuscript with the help of other authors.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V Thewes.

Ethics declarations

Competing interests

Stefan Kaulfuss and Holger Hess-Stumpp are employees of Bayer Pharma AG. However, no respective chemical compounds were used in the manuscript and the collaboration was for scientific purposes. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thewes, V., Simon, R., Hlevnjak, M. et al. The branched-chain amino acid transaminase 1 sustains growth of antiestrogen-resistant and ERα-negative breast cancer. Oncogene 36, 4124–4134 (2017). https://doi.org/10.1038/onc.2017.32

Download citation

Further reading

Search

Quick links