Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice

Abstract

Mice lacking genes involving in the DNA-damage response (DDR) are often tumor prone owing to genome instability caused by oncogenic challenges. Previous studies demonstrate that activating transcription factor 3 (ATF3), a common stress sensor, can activate the tumor suppressor p53 and regulate expression of p53 target genes upon DNA damage. However, whether ATF3 contributes to the maintenance of genome stability and tumor suppression remains unknown. Here we report that Atf3-deficient (Atf3−/−) mice developed spontaneous tumors, and died significantly earlier than wild-type (Atf3+/+) mice. Consistent with these results, Atf3−/− mouse embryonic fibroblasts (MEFs) had more aberrant chromosomes and micronuclei, and were genetically unstable. Whereas we demonstrated that ATF3 activated p53 and promoted its pro-apoptotic activity in mouse thymi and small intestines, the chromosomal instability caused by Atf3 deficiency was largely dependent on the regulation of p53 by ATF3. Interestingly, loss of Atf3 also promoted spontaneous tumorigenesis in Trp53+/− mice, but did not affect tumor formation in Trp53−/− mice. Our results thus provide the first genetic evidence linking ATF3 to the suppression of the early development of cancer, and underscore the importance of ATF3 in the maintenance of genome integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Vousden KH, Prives C . Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413–431.

    CAS  PubMed Central  Google Scholar 

  2. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  CAS  Google Scholar 

  3. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS et al. Mice deficient for p53 are developmentally normal but susceptible to spontanenous tumors. Nature 1992; 356: 215–221.

    Article  CAS  Google Scholar 

  4. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    Article  CAS  Google Scholar 

  5. Donehower LA, Lozano G . 20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009; 9: 831–841.

    Article  CAS  Google Scholar 

  6. Harvey M, Sands AT, Weiss RS, Hegi ME, Wiseman RW, Pantazis P et al. In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. Oncogene 1993; 8: 2457–2467.

    CAS  PubMed  Google Scholar 

  7. Ward IM, Minn K, van Deursen J, Chen J . p53 binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol 2003; 23: 2556–2563.

    Article  CAS  PubMed Central  Google Scholar 

  8. Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 2003; 114: 359–370.

    Article  CAS  Google Scholar 

  9. Morales JC, Franco S, Murphy MM, Bassing CH, Mills KD, Adams MM et al. 53BP1 and p53 synergize to suppress genomic instability and lymphomagenesis. Proc Natl Acad Sci USA 2006; 103: 3310–3315.

    Article  CAS  Google Scholar 

  10. Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114: 371–383.

    Article  CAS  PubMed Central  Google Scholar 

  11. Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U . ATF3 and stress responses. Gene Expr 1999; 7: 321–325.

    CAS  PubMed  Google Scholar 

  12. Yan C, Lu D, Hai T, Boyd DD . Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J 2005; 24: 2425–2435.

    Article  CAS  PubMed Central  Google Scholar 

  13. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M, Roach JC et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 2006; 441: 173–178.

    Article  CAS  Google Scholar 

  14. Fan F, Jin S, Amundson SA, Tong T, Fan W, Zhao H et al. ATF3 induction following DNA damage is regulated by distinct signaling pathways and over-expression of ATF3 protein suppresses cells growth. Oncogene 2002; 21: 7488–7496.

    Article  CAS  Google Scholar 

  15. Kool J, Hamdi M, Cornelissen-Steijger P, van der Eb AJ, Terleth C, Van Dam H . Induction of ATF3 by ionizing radiation is mediated via a signaling pathway that includes ATM,Nibrin1,stress-induced MAPkinases and ATF-2. Oncogene 2003; 22: 4235–4242.

    Article  CAS  Google Scholar 

  16. Lu D, Wolfgang CD, Hai T . Activating transcription factor 3, a stress-inducible gene, suppresses Ras-stimulated tumorigenesis. J Biol Chem 2006; 281: 10473–10481.

    Article  CAS  Google Scholar 

  17. Turchi L, Aberdam E, Mazure N, Pouyssegur J, Deckert M, Kitajima S et al. Hif-2apha mediates UV-induced apoptosis through a novel ATF3-dependent death pathway. Cell Death Differ 2008; 15: 1472–1480.

    Article  CAS  Google Scholar 

  18. Cui H, Li X, Wang Q-E, Wang H, Ding H-F, Zhang J et al. The stress responsive gene ATF3 mediates dichotomous UV responses by regulating Tip60 and p53 proteins. J Biol Chem 2016; 291: 10847–10857.

    Article  CAS  PubMed Central  Google Scholar 

  19. Turchi L, Fareh M, Aberdam E, Kitajima S, Simpson F, Wicking C et al. ATF3 and p15PAF are novel gatekeepers of genomic integrity upon UV stress. Cell Death Differ 2009; 16: 728–737.

    Article  CAS  Google Scholar 

  20. Mo P, Wang H, Lu H, Boyd DD, Yan C . MDM2 mediates ubiquitination and degradation of activating transcription factor 3. J Biol Chem 2010; 285: 26908–26915.

    Article  CAS  PubMed Central  Google Scholar 

  21. Zhao J, Li X, Guo M, Yu J, Yan C . The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3k27ac for transcriptional regulation. BMC Genomics 2016; 17: 335.

    Article  PubMed Central  Google Scholar 

  22. Cui H, Guo M, Xu D, Ding Z-C, Zhou G, Ding H-F et al. The stress-responsive gene ATF3 regulates the histone acetyltransferase Tip60. Nat Commun 2015; 6: 6752.

    Article  CAS  PubMed Central  Google Scholar 

  23. Yan C, Boyd DD . ATF3 regulates the stability of p53: A link to cancer. Cell Cycle 2006; 5: 926–929.

    Article  CAS  Google Scholar 

  24. Jan Y-H, Tsai H-Y, Yang C-J, Huang M-S, Yang Y-F, Lai T-C et al. Adenylate kinase-4 is a marker of poor clinical outcomes that promotes metastasis of lung cancer by downregulating the transcription factor 3. Cancer Res 2012; 72: 5119–5129.

    Article  CAS  Google Scholar 

  25. Xie JJ, Xie YM, Chen B, Pan F, Guo JC, Zhao Q et al. ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget 2014; 5: 8569–8582.

    PubMed  PubMed Central  Google Scholar 

  26. Wang Z, Kim J, Teng Y, Ding H-F, Zhang J, Hai TYC . Loss of ATF3 promotes hormone-induced prostate carcinogenesis and the emergence of CK5+CK8+ epithelial cells. Oncogene 2016; 35: 3555–3564.

    Article  CAS  Google Scholar 

  27. Bartkova J, Hoeji Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed Central  Google Scholar 

  28. Hartman MG, Lu D, Kim ML, Kociba GJ, Shukri T, Buteau J et al. Role for activating transcription factor 3 in stress-induced β-cell apoptosis. Mol Cell Biol 2004; 24: 5721–5732.

    Article  CAS  PubMed Central  Google Scholar 

  29. Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM et al. p63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA 2006; 103: 8435–8440.

    Article  CAS  Google Scholar 

  30. Zhou BS, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    Article  CAS  Google Scholar 

  31. Campbell MR, Wang Y, Andrew SE, Liu Y . Msh2 deficiency leads to chromosomal abnormalities, centrosome amplification, and telomere capping defect. Oncogene 2006; 25: 2531–2536.

    Article  CAS  Google Scholar 

  32. Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S et al. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 2009; 28: 3413–3427.

    Article  CAS  PubMed Central  Google Scholar 

  33. Clarke A, Purdie C, Harrison D, Morris R, Bird C, Hooper M et al. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 1993; 362: 849–852.

    Article  CAS  Google Scholar 

  34. Lowe S, Schmitt E, Smith S, Osborne B, Jacks T . p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–849.

    Article  CAS  Google Scholar 

  35. Merritt AJ, Potten CS, Kemp CJ, Hickman JA, Balmain A, Lane DP et al. The role of p53 in spontaneous and radiation-induced apoptosis in the gastrointestinal tract of normal and p53-deficient mice. Cancer Res 1994; 54: 614–617.

    CAS  PubMed  Google Scholar 

  36. Armata H, Garlick D, Sluss H . The ataxia telangiectasis-mutated target site Ser18 is required for p53-mediated tumor suppression. Cancer Res 2007; 67: 11696–11703.

    Article  CAS  Google Scholar 

  37. Gold ES, Ramsey SA, Sartain MJ, Selinummi J, Podolsky I, Rodriguez DJ et al. ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med 2012; 209: 807–817.

    Article  CAS  PubMed Central  Google Scholar 

  38. Hoetzenecker W, Echtenacher B, Guenova E, Hoetzenecker K, Woelbing F, Bruck J et al. ROS-induced ATF3 causes susceptibility to secondary infections during sepsis-associated immunosuppression. Nat Med 2012; 18: 128–134.

    Article  CAS  Google Scholar 

  39. Zhou H, Shen D-F, Bian Z-Y, Zong J, Deng W, Zhang Y et al. Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS ONE 2011; 6: e26744.

    Article  CAS  PubMed Central  Google Scholar 

  40. Beleza-Meireles A, Tohonen V, Soderhall C, Schwentner C, Radmayr C, Kockum I et al. Activating transcription 3: a hormone responsive gene in the etiology of hypospadias. Eur J Endocrinol 2008; 158: 729–739.

    Article  CAS  Google Scholar 

  41. Ishiguro T, Nakajima M, Naito M, Muto T, Tsuruo T . Identification of genes differentially expressed in B16 murine melanoma sublines with different metastatic potentials. Cancer Res 1996; 56: 875–879.

    CAS  PubMed  Google Scholar 

  42. Hackl C, Lang SA, Moser C, Mori A, Fichtner-Feigl S, Hellerbrand C et al. Activating transcription factor-3 (ATF3) functions as a tumor suppressor in colon cancer and is up-regulated upon heat-shock protein 90 (Hsp90) inhibition. BMC Cancer 2010; 10: 668.

    Article  CAS  PubMed Central  Google Scholar 

  43. Yuan X, Yu L, Li J, Xie G, Rong T, Zhang L et al. ATF3 suppresses metastasis of bladder cancer by regulating gelsolin-mediated remodeling of the actin cytoskeleton. Cancer Res 2013; 73: 3625–3637.

    Article  CAS  Google Scholar 

  44. Wang Z, Xu D, Ding H-F, Kim J, Zhang J, Hai T et al. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene 2015; 34: 4975–4984.

    Article  CAS  Google Scholar 

  45. Wei S, Wang H, Lu C, Malmut S, Zhang J, Ren S et al. The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. J Biol Chem 2014; 289: 8947–8959.

    Article  CAS  PubMed Central  Google Scholar 

  46. Yan C, Jamaluddin M, Aggarwal B, Myers J, Boyd DD . Gene expression profiling identifies activating transcription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Mol Cancer Ther 2005; 4: 233–241.

    Article  CAS  Google Scholar 

  47. Bar J, Hasim MS, Baghai T, Niknejad N, Perkins TJ, Stewart DJ et al. Induction of activating transcription factor 3 is associated with Cisplatin responsiveness in non-small cell lung carcinoma cells. Neoplasia 2016; 18: 525–535.

    Article  CAS  PubMed Central  Google Scholar 

  48. Sooraj D, Xu D, Cain JE, Gold DP, Williams BR . Activating transcription factor 3 expression as a marker of response to the histone deacetylase inhibitor Pracinostat. Mol Cancer Ther 2016; 15: 1726–1739.

    Article  CAS  Google Scholar 

  49. Yoo YD, Lee D-H, Cha-Molstad H, Kim H, Mun SR, Ji C et al. Glioma-derived cancer stem cells are hypersensitive to proteasomal inhibition. EMBO Rep 2017; 18: 150–168.

    Article  CAS  Google Scholar 

  50. Shin G, Kang TW, Yang S, Baek SJ, Jeong YS, Kim SY . GENT: gene expression database of normal and tumor tissues. Cancer Inform 2011; 10: 149–157.

    Article  CAS  PubMed Central  Google Scholar 

  51. Zhong S, Fields C, Su N, Pan Y-X, Robertson K . Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene 2007; 26: 2621–2634.

    Article  CAS  Google Scholar 

  52. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  Google Scholar 

  53. Chen BPC, Liang G, Whelan J, Hai T . ATF3 and ATF3ΔZip: transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 1994; 269: 15819–15826.

    CAS  PubMed  Google Scholar 

  54. Wolford CC, McConoughey SJ, Jalgaonkar SP, Leon M, Merchant AS, Dominick JL et al. Transcription factor ATF3 links host adaptive response to breast cancer metastasis. J Clin Invest 2013; 123: 2893–2906.

    Article  CAS  PubMed Central  Google Scholar 

  55. Yin X, Dewille JW, Hai T . A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 2008; 27: 2118–2127.

    Article  CAS  Google Scholar 

  56. Wang Z, Yan C . Emerging roles of ATF3 in the suppression of prostate cancer. Mol Cell Oncol 2016; 3: e1010948.

    Article  Google Scholar 

  57. Jiang L, Kon N, Li T, Wang S-J, Su THH, Baer R et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature 2015; 520: 57–62.

    Article  CAS  PubMed Central  Google Scholar 

  58. Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell 2012; 149: 1269–1283.

    Article  CAS  PubMed Central  Google Scholar 

  59. Kim K-H, Jeong J-Y, Surh Y-J, Kim K-W . Expression of stress-response ATF3 is mediated by Nrf2 in astrocytes. Nucleic Acids Res 2010; 38: 48–59.

    Article  CAS  Google Scholar 

  60. Jacquet K, Fradet-Turcotte A, Awakumov N, Lambert JP, Roques C, Pandita RK et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation. Mol Cell 2016; 62: 409–421.

    Article  CAS  PubMed Central  Google Scholar 

  61. Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L et al. Tip60 is a haplo-insufficient tumor suppressor required for an oncogene-induced DNA damage response. Nature 2007; 448: 1063–1067.

    Article  CAS  Google Scholar 

  62. Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S . Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun 2002; 297: 1302–1310.

    Article  CAS  Google Scholar 

  63. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005; 122: 957–968.

    Article  CAS  Google Scholar 

  64. Taketani K, Kawauchi J, Tanaka-Okamoto M, Ishizaki H, Tanaka Y, Sakai T et al. Key role of ATF3 in p53-dependent DR5 induction upon DNA damage of human colon cancer cells. Oncogene 2012; 31: 2210–2221.

    Article  CAS  Google Scholar 

  65. Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A et al. Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-α-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 2002; 277: 39025–39034.

    Article  CAS  Google Scholar 

  66. Xu X, Nguyen B-C, Dziunycz P, Chang S, Brooks Y, Lefort K et al. Opposing roles for calcineurin and ATF3 in squamous skin cancer. Nature 2010; 465: 368–372.

    Article  Google Scholar 

  67. Yan C, Wang H, Boyd DD . ATF3 represses 72-kDa type IV collagenase (MMP-2) expression by antagonizing p53-dependent trans-activation of the collagenase promoter. J Biol Chem 2002; 277: 10804–10812.

    Article  CAS  Google Scholar 

  68. Boehme KA, Blattner C . Regulation of p53—insights into a complex process. Crit Rev Biochem Mol Biol 2009; 44: 367–392.

    Article  CAS  Google Scholar 

  69. Pant V, Lozano G . Limiting the power of p53 through the ubiquitin proteasome pathway. Gene Dev 2014; 28: 1739–1751.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grant R01CA139107 to CY, and the grants from the National Science Foundation of China (81472178) and the State 973 Program of China (2014CB542005) to WD.

Author contributions

ZY, YH and HY bred the mice and carried out histopathological examinations of tumor sections supervised by RK, WD and CY. LL isolated MEFs and prepared slides for cytogenetic analysis. ZY and YH carried out immunohistochemical and immunofluorescence staining with the help of JZ and HD. TH provided the ATF3 −/− mice. BJ, JZ and HD edited the manuscript. CY and WD conceived the study and analyzed the data. CY wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W Deng or C Yan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., He, Y., Deng, W. et al. Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice. Oncogene 37, 18–27 (2018). https://doi.org/10.1038/onc.2017.310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.310

This article is cited by

Search

Quick links