Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation

Abstract

Aberrant protein glycosylation could be a distinct surface-marker of cancer cells that influences cancer progression and metastasis because glycosylation can regulate membrane protein folding which alters receptor activation and changes epitope exposure for antibody (Ab) recognition. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), a glycophosphoinositol-anchored protein, is a heavily glycosylated tumor antigen. However, the clinical significance and biological effect of CEACAM6 glycosylation has not been addressed in cancers. We recently developed an anti-CEACAM6 Ab (TMU) from an immune llama library which can be engineered to a single-domain (sd)Ab or a heavy-chain (HC)Ab. The TMU HCAb specifically recognized glycosylated CEACAM6 compared to the conventional antibodies. Using the TMU HCAb, we found that glycosylated CEACAM6 was a tumor marker associated with recurrence in early-stage OSCC (oral squamous cell carcinoma) patients. CEACAM6 promoted OSCC cell invasion, migration, cytoskeletal rearrangement, and metastasis via interaction with epidermal growth factor (EGF) receptor (EGFR) and enhancing EGFR activation, clustering and intracellular signaling cascades. These functions were modulated by N-acetylglucosaminyltransferase 5 (MGAT5) which mediated N-glycosylation at Asn256 (N256) of CEACAM6. Finally, the TMU sdAb and HCAb treatment inhibited the migration, invasion and EGF-induced signaling in CEACAM6-overexpressing cells. In conclusion, the complex N-glycosylation of CEACAM6 is critical for EGFR signaling of OSCC invasion and metastasis. Targeting glycosylated CEACAM6 with the TMU sdAb or TMU HCAb could be a feasible therapy for OSCC.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Taniguchi N, Kizuka Y . Glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv Cancer Res 2015; 126: 11–51.

    Article  CAS  Google Scholar 

  2. Liu YC, Yen HY, Chen CY, Chen CH, Cheng PF, Juan YH et al. Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc Natl Acad Sci USA 2011; 108: 11332–11337.

    Article  CAS  Google Scholar 

  3. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res 2010; 70: 719–729.

    Article  CAS  Google Scholar 

  4. Beauchemin N, Arabzadeh A . Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32: 643–671.

    Article  CAS  Google Scholar 

  5. Duxbury MS, Ito H, Benoit E, Ashley SW, Whang EE . CEACAM6 is a determinant of pancreatic adenocarcinoma cellular invasiveness. Br J Cancer 2004; 91: 1384–1390.

    Article  CAS  Google Scholar 

  6. Zang M, Zhang B, Zhang Y, Li J, Su L, Zhu Z et al. CEACAM6 promotes gastric cancer invasion and metastasis by inducing epithelial-mesenchymal transition via PI3K/AKT signaling pathway. PloS one 2014; 9: e112908.

    Article  Google Scholar 

  7. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE . Overexpression of CEACAM6 promotes insulin-like growth factor I-induced pancreatic adenocarcinoma cellular invasiveness. Oncogene 2004; 23: 5834–5842.

    Article  CAS  Google Scholar 

  8. Camacho-Leal P, Zhai AB, Stanners CP . A co-clustering model involving alpha5beta1 integrin for the biological effects of GPI-anchored human carcinoembryonic antigen (CEA). J Cell Physiol 2007; 211: 791–802.

    Article  CAS  Google Scholar 

  9. Gemei M, Mirabelli P, Di Noto R, Corbo C, Iaccarino A, Zamboli A et al. CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo. Cancer 2013; 119: 729–738.

    Article  CAS  Google Scholar 

  10. Balk-Moller E, Kim J, Hopkinson B, Timmermans-Wielenga V, Petersen OW, Villadsen R . A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol 2014; 184: 1198–1208.

    Article  Google Scholar 

  11. Chan CH, Stanners CP . Novel mouse model for carcinoembryonic antigen-based therapy. Mol Ther 2004; 9: 775–785.

    Article  CAS  Google Scholar 

  12. Kolla V, Gonzales LW, Bailey NA, Wang P, Angampalli S, Godinez MH et al. Carcinoembryonic cell adhesion molecule 6 in human lung: regulated expression of a multifunctional type II cell protein. Am J Physiol Lung Cell Mol Physiol 2009; 296: L1019–L1030.

    Article  CAS  Google Scholar 

  13. Blumenthal RD, Hansen HJ, Goldenberg DM . Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res 2005; 65: 8809–8817.

    Article  CAS  Google Scholar 

  14. Riley CJ, Engelhardt KP, Saldanha JW, Qi W, Cooke LS, Zhu Y et al. Design and activity of a murine and humanized anti-CEACAM6 single-chain variable fragment in the treatment of pancreatic cancer. Cancer Res 2009; 69: 1933–1940.

    Article  CAS  Google Scholar 

  15. Bonsor DA, Gunther S, Beadenkopf R, Beckett D, Sundberg EJ . Diverse oligomeric states of CEACAM IgV domains. Proc Natl Acad Sci USA 2015; 112: 13561–13566.

    Article  CAS  Google Scholar 

  16. Zhuo Y, Yang JY, Moremen KW, Prestegard JH . Glycosylation alters dimerization properties of a cell-surface signaling protein, CEACAM1. J Biol Chem 2016; 291: 20085–20095.

    Article  CAS  Google Scholar 

  17. van Gisbergen KP, Aarnoudse CA, Meijer GA, Geijtenbeek TB, van Kooyk Y . Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin. Cancer Res 2005; 65: 5935–5944.

    Article  CAS  Google Scholar 

  18. Jacquemet G, Hamidi H, Ivaska J . Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr Opin Cell Biol 2015; 36: 23–31.

    Article  CAS  Google Scholar 

  19. Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 2004; 306: 120–124.

    Article  CAS  Google Scholar 

  20. Kobayashi M, Miki Y, Ebina M, Abe K, Mori K, Narumi S et al. Carcinoembryonic antigen-related cell adhesion molecules as surrogate markers for EGFR inhibitor sensitivity in human lung adenocarcinoma. Br J Cancer 2012; 107: 1745–1753.

    Article  CAS  Google Scholar 

  21. Ahdi Khosroshahi S, Farajnia S, Ghiamirad M, Tanomand A, Veisi K, Rahbarnia L et al. Development and evaluation of a single domain antibody against human epidermal growth factor receptor (EGFR). Protein Expr Purif 2016; 120: 59–64.

    Article  CAS  Google Scholar 

  22. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B et al. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 2000; 78: 11–21.

    Article  CAS  Google Scholar 

  23. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG et al. Single-domain antibody fragments with high conformational stability. Protein Sci 2002; 11: 500–515.

    Article  CAS  Google Scholar 

  24. Sato Y, Tateno H, Adachi J, Okuyama H, Endo H, Tomonaga T et al. Generation of a monoclonal antibody recognizing the CEACAM glycan structure and inhibiting adhesion using cancer tissue-originated spheroid as an antigen. Sci Rep 2016; 6: 24823.

    Article  CAS  Google Scholar 

  25. Cameron S, de Long LM, Hazar-Rethinam M, Topkas E, Endo-Munoz L, Cumming A et al. Focal overexpression of CEACAM6 contributes to enhanced tumourigenesis in head and neck cancer via suppression of apoptosis. Mol Cancer 2012; 11: 74.

    Article  CAS  Google Scholar 

  26. Xu C, Ng DT . Glycosylation-directed quality control of protein folding. Nat Rev Mol Cell Biol 2015; 16: 742–752.

    Article  CAS  Google Scholar 

  27. Zang M, Zhang Y, Zhang B, Hu L, Li J, Fan Z et al. CEACAM6 promotes tumor angiogenesis and vasculogenic mimicry in gastric cancer via FAK signaling. Biochim Biophys Acta 2015; 1852: 1020–1028.

    Article  CAS  Google Scholar 

  28. Lau KS, Dennis JW . N-Glycans in cancer progression. Glycobiology 2008; 18: 750–760.

    Article  CAS  Google Scholar 

  29. Kuriyan J, Eisenberg D . The origin of protein interactions and allostery in colocalization. Nature 2007; 450: 983–990.

    Article  CAS  Google Scholar 

  30. Takenaka Y, Fukumori T, Raz A . Galectin-3 and metastasis. Glycoconjugate J 2004; 19: 543–549.

    Article  Google Scholar 

  31. Monteiro L, Ricardo S, Delgado M, Garcez F, do Amaral B, Lopes C . Phosphorylated EGFR at tyrosine 1173 correlates with poor prognosis in oral squamous cell carcinomas. Oral Dis 2014; 20: 178–185.

    Article  Google Scholar 

  32. Cooper JB, Cohen EE . Mechanisms of resistance to EGFR inhibitors in head and neck cancer. Head Neck 2009; 31: 1086–1094.

    Article  Google Scholar 

  33. Sharafinski ME, Ferris RL, Ferrone S, Grandis JR . Epidermal growth factor receptor targeted therapy of squamous cell carcinoma of the head and neck. Head Neck 2010; 32: 1412–1421.

    Article  Google Scholar 

  34. Cheng TM, Murad YM, Chang CC, Yang MC, Baral TN, Cowan A et al. Single domain antibody against carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) inhibits proliferation, migration, invasion and angiogenesis of pancreatic cancer cells. Eur J Cancer 2012; 50: 713–721.

    Article  Google Scholar 

  35. Baral TN, Murad Y, Nguyen TD, Iqbal U, Zhang J . Isolation of functional single domain antibody by whole cell immunization: implications for cancer treatment. J Immunol Methods 2011; 371: 70–80.

    Article  CAS  Google Scholar 

  36. Wong DY, Chang KW, Chen CF, Chang RC . Characterization of two new cell lines derived from oral cavity human squamous cell carcinomas—OC1 and OC2. J Oral Maxillofac Surg 1990; 48: 385–390.

    Article  CAS  Google Scholar 

  37. Yang SC, Lin SC, Chiang WF, Yen CY, Lin CH, Liu SY . Areca nut extract treatment elicits the fibroblastoid morphological changes, actin re-organization and signaling activation in oral keratinocytes. J Oral Pathol Med 2003; 32: 600–605.

    Article  Google Scholar 

  38. Wu MH, Hong HC, Hong TM, Chiang WF, Jin YT, Chen YL . Targeting galectin-1 in carcinoma-associated fibroblasts inhibits oral squamous cell carcinoma metastasis by downregulating MCP-1/CCL2 expression. Clin Cancer Res 2011; 17: 1306–1316.

    Article  CAS  Google Scholar 

  39. Wu MH, Ma WL, Hsu CL, Chen YL, Ou JH, Ryan CK et al. Androgen receptor promotes hepatitis B virus-induced hepatocarcinogenesis through modulation of hepatitis B virus RNA transcription. Sci Transl Med 2010; 2: 32ra35.

    PubMed  PubMed Central  Google Scholar 

  40. Chen YF, Chou CY, Wilkins RJ, Ellory JC, Mount DB, Shen MR . Motor protein-dependent membrane trafficking of KCl cotransporter-4 is important for cancer cell invasion. Cancer Res 2009; 69: 8585–8593.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RNAi reagents were obtained from the National Core Facility for Manipulation of Gene Function by RNAi, miRNA, miRNA sponges, and the CRISPR/Genomic Research Center, Academia Sinica, supported by the National Core Facility Program for Biotechnology Grants of the Ministry of Science and Technology (MOST 104-2319-B-001-001). The human samples were from the Human Tumor Tissue Bank, Chi-Mei Medical Center (Liouying, Tainan, Taiwan). We thank the Image and Bioinformatics Core Facility of Taipei Medical University which provided assistance with deconvolution microscopy and the microarray analysis. This work was supported by grants MOST 103-2320-B-038-013-MY3 and MOST 104-2321-B-038-007 from the Ministry of Science and Technology, Taiwan; grants TMU101-AE3-Y20, 103CM-TMU-01, CLFHR10222 and TMU-T104-06 from Taipei Medical University and Chi-Mei Medical Center, Taiwan; and grant NHRI-EX105-10409BC from the National Health Research Institutes, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M-H Wu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiang, WF., Cheng, TM., Chang, CC. et al. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) promotes EGF receptor signaling of oral squamous cell carcinoma metastasis via the complex N-glycosylation. Oncogene 37, 116–127 (2018). https://doi.org/10.1038/onc.2017.303

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.303

This article is cited by

Search

Quick links