Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Pathways from senescence to melanoma: focus on MITF sumoylation

Abstract

Cutaneous melanoma is a deadly skin cancer that originates from melanocytes. The development of cutaneous melanoma involves a complex interaction between environmental factors, mainly ultraviolet radiation from sunlight, and genetic alterations. Melanoma can also occur from a pre-existing nevus, a benign lesion formed from melanocytes harboring oncogenic mutations that trigger proliferative arrest and senescence entry. Senescence is a potent barrier against tumor progression. As such, the acquisition of mutations that suppress senescence and promote cell division is mandatory for cancer development. This topic appears central to melanoma development because, in humans, several somatic and germline mutations are related to the control of cellular senescence and proliferative activity. Consequently, primary melanoma can be viewed as a paradigm of senescence evasion. In support of this notion, a sumoylation-defective germline mutation in microphthalmia-associated transcription factor (MITF), a master regulator of melanocyte homeostasis, is associated with the development of melanoma. Interestingly, this MITF variant has also been recently reported to negatively impact the program of senescence. This article reviews the genetic alterations that have been shown to be involved in melanoma and that alter the process of senescence to favor melanoma development. Then, the transcription factor MITF and its sumoylation-defective mutant are described. How sumoylation misregulation can change MITF activity and impact the process of senescence is discussed. Finally, the contribution of such information to the development of anti-malignant melanoma strategies is evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A et al. Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 2012; 485: 502–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Krauthammer M, Kong Y, Bacchiocchi A, Evans P, Pornputtapong N, Wu C et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet 2015; 47: 996–1002.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44: 1006–1014.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Network TCGA. Genomic classification of cutaneous melanoma. Cell 2015; 161: 1681–1696.

    Google Scholar 

  6. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    CAS  PubMed  Google Scholar 

  7. Pollock PM, Meltzer PS . A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2002; 2: 5–7.

    CAS  PubMed  Google Scholar 

  8. Davies MA, Stemke-Hale K, Tellez C, Calderone TL, Deng W, Prieto VG et al. A novel AKT3 mutation in melanoma tumours and cell lines. Br J Cancer 2008; 99: 1265–1268.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu H, Goel V, Haluska FG . PTEN signaling pathways in melanoma. Oncogene 2003; 22: 3113–3122.

    CAS  PubMed  Google Scholar 

  10. Larue L, Delmas V . The WNT/Beta-catenin pathway in melanoma. Front Biosci 2006; 11: 733–742.

    CAS  PubMed  Google Scholar 

  11. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P . Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997; 275: 1790–1792.

    CAS  PubMed  Google Scholar 

  12. Davis MJ, Ha BH, Holman EC, Halaban R, Schlessinger J, Boggon TJ . RAC1P29S is a spontaneously activating cancer-associated GTPase. Proc Natl Acad Sci USA 2013; 110: 912–917.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li A, Ma Y, Jin M, Mason S, Mort RL, Blyth K et al. Activated mutant NRas(Q61K) drives aberrant melanocyte signaling, survival, and invasiveness via a Rac1-dependent mechanism. J Invest Dermatol 2012; 132: 2610–2621.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Machesky LM, Sansom OJ . Rac1 in the driver's seat for melanoma. Pigment Cell Melanoma Res 2012; 25: 762–764.

    CAS  PubMed  Google Scholar 

  15. Xue Y, Li NL, Yang JY, Chen Y, Yang LL, Liu WC . Phosphatidylinositol 3'-kinase signaling pathway is essential for Rac1-induced hypoxia-inducible factor-1(alpha) and vascular endothelial growth factor expression. Am J Physiol Heart Circ Physiol 2011; 300: H2169–H2176.

    CAS  PubMed  Google Scholar 

  16. Arafeh R, Qutob N, Emmanuel R, Keren-Paz A, Madore J, Elkahloun A et al. Recurrent inactivating RASA2 mutations in melanoma. Nat Genet 2015; 47: 1408–1410.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell 2015; 161: 1681–1696.

    Article  Google Scholar 

  18. Pandiani C, Beranger GE, Leclerc J, Ballotti R, Bertolotto C . Focus on cutaneous and uveal melanoma specificities. Genes Dev 2017; 31: 724–743.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Villanueva J, Infante JR, Krepler C, Reyes-Uribe P, Samanta M, Chen HY et al. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell reports 2013; 4: 1090–1099.

    CAS  PubMed  Google Scholar 

  20. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    CAS  PubMed  Google Scholar 

  21. Bauer J, Curtin JA, Pinkel D, Bastian BC . Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol 2007; 127: 179–182.

    CAS  PubMed  Google Scholar 

  22. Bastian BC, LeBoit PE, Pinkel D . Mutations and copy number increase of HRAS in Spitz nevi with distinctive histopathological features. Am J Pathol 2000; 157: 967–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 2006; 95: 496–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mackenzie Ross AD, Cook MG, Chong H, Hossain M, Pandha HS, Bennett DC . Senescence evasion in melanoma progression: uncoupling of DNA-damage signaling from p53 activation and p21 expression. Pigment Cell Melanoma Res 2013; 26: 226–235.

    PubMed  PubMed Central  Google Scholar 

  26. Tran S, Rizos H . Human nevi lack distinguishing senescence traits. Aging 2013; 5: 98–99.

    PubMed  PubMed Central  Google Scholar 

  27. Tran SL, Rizos H . Monitoring oncogenic B-RAF-induced senescence in melanocytes. Methods Mol Biol 2013; 965: 313–326.

    CAS  PubMed  Google Scholar 

  28. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    CAS  PubMed  Google Scholar 

  29. Zhuang D, Mannava S, Grachtchouk V, Tang WH, Patil S, Wawrzyniak JA et al. C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 2008; 27: 6623–6634.

    CAS  PubMed  Google Scholar 

  30. Denoyelle C, Abou-Rjaily G, Bezrookove V, Verhaegen M, Johnson TM, Fullen DR et al. Anti-oncogenic role of the endoplasmic reticulum differentially activated by mutations in the MAPK pathway. Nat Cell Biol 2006; 8: 1053–1063.

    CAS  PubMed  Google Scholar 

  31. Larribere L, Wu H, Novak D, Galach M, Bernhardt M, Orouji E et al. NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res 2015; 28: 407–416.

    CAS  PubMed  Google Scholar 

  32. Haferkamp S, Tran SL, Becker TM, Scurr LL, Kefford RF, Rizos H . The relative contributions of the p53 and pRb pathways in oncogene-induced melanocyte senescence. Aging 2009; 1: 542–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 2012; 26: 1055–1069.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. McNeal AS, Liu K, Nakhate V, Natale CA, Duperret EK, Capell BC et al. CDKN2B loss promotes progression from benign melanocytic nevus to melanoma. Cancer Discov 2015; 5: 1072–1085.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 2008; 132: 363–374.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Scurr LL, Pupo GM, Becker TM, Lai K, Schrama D, Haferkamp S et al. IGFBP7 is not required for B-RAF-induced melanocyte senescence. Cell 2010; 141: 717–727.

    CAS  PubMed  Google Scholar 

  37. Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008; 133: 1019–1031.

    CAS  PubMed  Google Scholar 

  38. Kuilman T, Peeper DS . Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer 2009; 9: 81–94.

    CAS  PubMed  Google Scholar 

  39. Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 2009; 28: 2289–2298.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005; 15: 249–254.

    CAS  PubMed  Google Scholar 

  41. Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr. et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet 2009; 41: 544–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    CAS  PubMed  Google Scholar 

  43. Ackermann J, Frutschi M, Kaloulis K, McKee T, Trumpp A, Beermann F . Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res 2005; 65: 4005–4011.

    CAS  PubMed  Google Scholar 

  44. Bartek J, Lukas J, Bartkova J . DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'. Cell Cycle 2007; 6: 2344–2347.

    CAS  PubMed  Google Scholar 

  45. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    CAS  PubMed  Google Scholar 

  46. Mallette FA, Gaumont-Leclerc MF, Ferbeyre G . The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes Dev 2007; 21: 43–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Abdallah P, Luciano P, Runge KW, Lisby M, Geli V, Gilson E et al. A two-step model for senescence triggered by a single critically short telomere. Nat Cell Biol 2009; 11: 988–993.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bataille V, Kato BS, Falchi M, Gardner J, Kimura M, Lens M et al. Nevus size and number are associated with telomere length and represent potential markers of a decreased senescence in vivo. Cancer Epidemiol Biomarkers Prev 2007; 16: 1499–1502.

    CAS  PubMed  Google Scholar 

  49. Suram A, Kaplunov J, Patel PL, Ruan H, Cerutti A, Boccardi V et al. Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions. EMBO J 2012; 31: 2839–2851.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bastian BC . The longer your telomeres, the larger your nevus? Am J Dermatopathol 2003; 25: 83–84.

    PubMed  Google Scholar 

  51. Bennett DC . Genetics of melanoma progression: the rise and fall of cell senescence. Pigment Cell Melanoma Res 2016; 29: 122–140.

    CAS  PubMed  Google Scholar 

  52. Bastian BC . The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 2014; 9: 239–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ben-Porath I, Weinberg RA . The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 2005; 37: 961–976.

    CAS  PubMed  Google Scholar 

  54. Neumann AA, Reddel RR . Telomere maintenance and cancer—look, no telomerase. Nat Rev Cancer 2002; 2: 879–884.

    CAS  PubMed  Google Scholar 

  55. Conde-Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in beta-catenin transcriptional activity. Nat Commun 2015; 6: 8093.

    CAS  PubMed  Google Scholar 

  56. Delmas V, Beermann F, Martinozzi S, Carreira S, Ackermann J, Kumasaka M et al. Beta-catenin induces immortalization of melanocytes by suppressing p16INK4a expression and cooperates with N-Ras in melanoma development. Genes Dev 2007; 21: 2923–2935.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Haferkamp S, Becker TM, Scurr LL, Kefford RF, Rizos H . p16INK4a-induced senescence is disabled by melanoma-associated mutations. Aging Cell 2008; 7: 733–745.

    CAS  PubMed  Google Scholar 

  58. Viros A, Sanchez-Laorden B, Pedersen M, Furney SJ, Rae J, Hogan K et al. Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53. Nature 2014; 511: 478–482.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu S, Wurdak H, Wang Y, Galkin A, Tao H, Li J et al. A genomic screen identifies TYRO3 as a MITF regulator in melanoma. Proc Natl Acad Sci USA 2009; 106: 17025–17030.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mannava S, Omilian AR, Wawrzyniak JA, Fink EE, Zhuang D, Miecznikowski JC et al. PP2A-B56alpha controls oncogene-induced senescence in normal and tumor human melanocytic cells. Oncogene 2012; 31: 1484–1492.

    CAS  PubMed  Google Scholar 

  61. Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA et al. MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 2001; 69: 765–773.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Demenais F, Mohamdi H, Chaudru V, Goldstein AM, Newton Bishop JA, Bishop DT et al. Association of MC1R variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study. J Natl Cancer Inst 2010; 102: 1568–1583.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aoude LG, Wadt KA, Pritchard AL, Hayward NK . Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell Melanoma Res 2015; 28: 148–160.

    CAS  PubMed  Google Scholar 

  64. Gruis NA, van der Velden PA, Sandkuijl LA, Prins DE, Weaver-Feldhaus J, Kamb A et al. Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nat Genet 1995; 10: 351–353.

    CAS  PubMed  Google Scholar 

  65. Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L et al. A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 2001; 20: 5543–5547.

    CAS  PubMed  Google Scholar 

  66. Sherr CJ, Beach D, Shapiro GI . Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov 2016; 6: 353–367.

    CAS  PubMed  Google Scholar 

  67. Basu S, Murphy ME . Genetic Modifiers of the p53 Pathway. Cold Spring Harb Perspect Med 2016; 6: a026302.

    PubMed  PubMed Central  Google Scholar 

  68. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ et al. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 1996; 12: 97–99.

    CAS  PubMed  Google Scholar 

  69. Sviderskaya EV, Gray-Schopfer VC, Hill SP, Smit NP, Evans-Whipp TJ, Bond J et al. p16/cyclin-dependent kinase inhibitor 2A deficiency in human melanocyte senescence, apoptosis, and immortalization: possible implications for melanoma progression. J Natl Cancer Inst 2003; 95: 723–732.

    CAS  PubMed  Google Scholar 

  70. Sviderskaya EV, Hill SP, Evans-Whipp TJ, Chin L, Orlow SJ, Easty DJ et al. p16(Ink4a) in melanocyte senescence and differentiation. J Natl Cancer Inst 2002; 94: 446–454.

    CAS  PubMed  Google Scholar 

  71. Ha L, Ichikawa T, Anver M, Dickins R, Lowe S, Sharpless NE et al. ARF functions as a melanoma tumor suppressor by inducing p53-independent senescence. Proc Natl Acad Sci USA 2007; 104: 10968–10973.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sherr CJ, McCormick F . The RB and p53 pathways in cancer. Cancer Cell 2002; 2: 103–112.

    CAS  PubMed  Google Scholar 

  73. Fung C, Pupo GM, Scolyer RA, Kefford RF, Rizos H . p16(INK) (4a) deficiency promotes DNA hyper-replication and genetic instability in melanocytes. Pigment Cell Melanoma Res 2013; 26: 236–246.

    CAS  PubMed  Google Scholar 

  74. Terzian T, Torchia EC, Dai D, Robinson SE, Murao K, Stiegmann RA et al. p53 prevents progression of nevi to melanoma predominantly through cell cycle regulation. Pigment Cell Melanoma Res 2010; 23: 781–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Christensen C, Bartkova J, Mistrik M, Hall A, Lange MK, Ralfkiaer U et al. A short acidic motif in ARF guards against mitochondrial dysfunction and melanoma susceptibility. Nat Commun 2014; 5: 5348.

    CAS  PubMed  Google Scholar 

  76. Hewitt C, Lee WuC, Evans G, Howell A, Elles RG, Jordan R et al. Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 2002; 11: 1273–1279.

    CAS  PubMed  Google Scholar 

  77. Meierjohann S . Oxidative stress in melanocyte senescence and melanoma transformation. Eur J Cell Biol 2014; 93: 36–41.

    CAS  PubMed  Google Scholar 

  78. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 2010; 6: 347.

    PubMed  PubMed Central  Google Scholar 

  79. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G . BAP1 and cancer. Nat Rev Cancer 2013; 13: 153–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Robles-Espinoza CD, Velasco-Herrera Mdel C, Hayward NK, Adams DJ . Telomere-regulating genes and the telomere interactome in familial cancers. Mol Cancer Res 2015; 13: 211–222.

    CAS  PubMed  Google Scholar 

  81. Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480: 94–98.

    CAS  PubMed  Google Scholar 

  82. Ghiorzo P, Pastorino L, Queirolo P, Bruno W, Tibiletti MG, Nasti S et al. Prevalence of the E318K MITF germline mutation in Italian melanoma patients: associations with histological subtypes and family cancer history. Pigment Cell Melanoma Res 2013; 26: 259–262.

    CAS  PubMed  Google Scholar 

  83. Sturm RA, Fox C, McClenahan P, Jagirdar K, Ibarrola-Villava M, Banan P et al. Phenotypic characterization of nevus and tumor patterns in MITF E318K mutation carrier melanoma patients. J Invest Dermatol 2014; 134: 141–149.

    CAS  PubMed  Google Scholar 

  84. Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011; 480: 99–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP et al. Microphthalmia gene product as a signal transducer in cAMP-induced differentiation of melanocytes. J Cell Biol 1998; 142: 827–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ . Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 1995; 11: 328–330.

    CAS  PubMed  Google Scholar 

  87. Jarrett SG, Wolf Horrell EM, Boulanger MC, D'Orazio JA . Defining the contribution of MC1R physiological ligands to ATR phosphorylation at Ser435, a predictor of DNA repair in melanocytes. J Invest Dermatol 2015; 135: 3086–3095.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Swope V, Alexander C, Starner R, Schwemberger S, Babcock G, Abdel-Malek ZA . Significance of the melanocortin 1 receptor in the DNA damage response of human melanocytes to ultraviolet radiation. Pigment Cell Melanoma Res 2014; 27: 601–610.

    CAS  PubMed  Google Scholar 

  89. Cao J, Wan L, Hacker E, Dai X, Lenna S, Jimenez-Cervantes C et al. MC1R is a potent regulator of PTEN after UV exposure in melanocytes. Mol Cell 2013; 51: 409–422.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Steingrimsson E, Copeland NG, Jenkins NA . Melanocytes and the microphthalmia transcription factor network. Annu Rev Genet 2004; 38: 365–411.

    CAS  PubMed  Google Scholar 

  91. Bertolotto C, Busca R, Abbe P, Bille K, Aberdam E, Ortonne JP et al. Different cis-acting elements are involved in the regulation of TRP1 and TRP2 promoter activities by cyclic AMP: pivotal role of M boxes (GTCATGTGCT) and of microphthalmia. Mol Cell Biol 1998; 18: 694–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Cheli Y, Ohanna M, Ballotti R, Bertolotto C . Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment Cell Melanoma Res 2010; 23: 27–40.

    CAS  PubMed  Google Scholar 

  93. Garraway LA, Widlund HR, Rubin MA, Getz G, Berger AJ, Ramaswamy S et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature 2005; 436: 117–122.

    CAS  PubMed  Google Scholar 

  94. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT, Donahue MK et al. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 2013; 504: 138–142.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Konieczkowski DJ, Johannessen CM, Abudayyeh O, Kim JW, Cooper ZA, Piris A et al. A melanoma cell state distinction lnfluences sensitivity to MAPK pathway inhibitors. Cancer Discov 2014; 4: 816–827.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Muller J, Krijgsman O, Tsoi J, Robert L, Hugo W, Song C et al. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma. Nat Commun 2014; 5: 5712.

    PubMed  Google Scholar 

  97. Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov 2013; 4: 94–109.

    PubMed  PubMed Central  Google Scholar 

  98. Falletta P, Sanchez-Del-Campo L, Chauhan J, Effern M, Kenyon A, Kershaw CJ et al. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev 2017; 31: 18–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Riesenberg S, Groetchen A, Siddaway R, Bald T, Reinhardt J, Smorra D et al. MITF and c-Jun antagonism interconnects melanoma dedifferentiation with pro-inflammatory cytokine responsiveness and myeloid cell recruitment. Nat Commun 2015; 6: 8755.

    CAS  PubMed  Google Scholar 

  100. Carreira S, Goodall J, Denat L, Rodriguez M, Nuciforo P, Hoek KS et al. Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. Genes Dev 2006; 20: 3426–3439.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Potrony M, Puig-Butille JA, Aguilera P, Badenas C, Tell-Marti G, Carrera C et al. Prevalence of MITF p.E318K in patients with melanoma independent of the presence of CDKN2A causative mutations. JAMA Dermatol 2016; 152: 405–412.

    PubMed  Google Scholar 

  102. Bonet C, Luciani F, Ottavi JF, Leclerc J, Jouenne FM, Boncompagni M et al. Deciphering the role of oncogenic MITFE318K in senescence delay and melanoma progression. J Natl Cancer Inst 2017; 109 doi:10.1093/jnci/djw340.

  103. Miller AJ, Levy C, Davis IJ, Razin E, Fisher DE . Sumoylation of MITF and its related family members TFE3 and TFEB. J Biol Chem 2005; 280: 146–155.

    CAS  PubMed  Google Scholar 

  104. Murakami H, Arnheiter H . Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res 2005; 18: 265–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wilkinson KA, Henley JM . Mechanisms, regulation and consequences of protein SUMOylation. Biochem J 2010; 428: 133–145.

    CAS  PubMed  Google Scholar 

  106. Gareau JR, Lima CD . The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11: 861–871.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Levy C, Sonnenblick A, Razin E . Role played by microphthalmia transcription factor phosphorylation and its Zip domain in its transcriptional inhibition by PIAS3. Mol Cell Biol 2003; 23: 9073–9080.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sonnenblick A, Levy C, Razin E . Interplay between MITF, PIAS3, and STAT3 in mast cells and melanocytes. Mol Cell Biol 2004; 24: 10584–10592.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Zhang YQ, Sarge KD . Sumoylation regulates lamin A function and is lost in lamin A mutants associated with familial cardiomyopathies. J Cell Biol 2008; 182: 35–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Walrath JC, Hawes JJ, Van Dyke T, Reilly KM . Genetically engineered mouse models in cancer research. Adv Cancer Res 2010; 106: 113–164.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsao H, Goel V, Wu H, Yang G, Haluska FG . Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J Invest Dermatol 2004; 122: 337–341.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Jafri M, Wake NC, Ascher DB, Pires DE, Gentle D, Morris MR et al. Germline mutations in the CDKN2B tumor suppressor gene predispose to renal cell carcinoma. Cancer Discov 2015; 5: 723–729.

    CAS  PubMed  Google Scholar 

  113. de-Paillerets BB, Lesueur F, Bertolotto C . A germline oncogenic MITF mutation and tumor susceptibility. Eur J Cell Biol 2013; 93: 71–75.

    Google Scholar 

  114. Widlund HR, Horstmann MA, Price ER, Cui J, Lessnick SL, Wu M et al. Beta-catenin-induced melanoma growth requires the downstream target microphthalmia-associated transcription factor. J Cell Biol 2002; 158: 1079–1087.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT, Gould Rothberg BE et al. Beta-catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 2011; 20: 741–754.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Andreou AM, Tavernarakis N . SUMOylation and cell signalling. Biotechnol J 2009; 4: 1740–1752.

    CAS  PubMed  Google Scholar 

  117. Andreou AM, Tavernarakis N . Roles for SUMO modification during senescence. Adv Exp Med Biol 2010; 694: 160–171.

    CAS  PubMed  Google Scholar 

  118. Seeler JS, Dejean A . SUMO and the robustness of cancer. Nat Rev Cancer 2017; 17: 184–197.

    CAS  PubMed  Google Scholar 

  119. Jhappan C, Noonan FP, Merlino G . Ultraviolet radiation and cutaneous malignant melanoma. Oncogene 2003; 22: 3099–3112.

    CAS  PubMed  Google Scholar 

  120. Bedogni B, Powell MB . Skin hypoxia: a promoting environmental factor in melanomagenesis. Cell Cycle 2006; 5: 1258–1261.

    CAS  PubMed  Google Scholar 

  121. Bossis G, Sarry JE, Kifagi C, Ristic M, Saland E, Vergez F et al. The ROS/SUMO axis contributes to the response of acute myeloid leukemia cells to chemotherapeutic drugs. Cell Rep 2014; 7: 1815–1823.

    CAS  PubMed  Google Scholar 

  122. Scurr LL, Haferkamp S, Rizos H . The role of sumoylation in senescence. Adv Exp Med Biol 2017; 963: 215–226.

    CAS  PubMed  Google Scholar 

  123. Lowings P, Yavuzer U, Goding CR . Positive and negative elements regulate a melanocyte-specific promoter. Mol Cell Biol 1992; 12: 3653–3662.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 2015; 372: 2521–2532.

    CAS  PubMed  Google Scholar 

  125. Tentori L, Lacal PM, Graziani G . Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol Sci 2013; 34: 656–666.

    CAS  PubMed  Google Scholar 

  126. Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012; 335: 348–353.

    CAS  PubMed  Google Scholar 

  127. Yu B, Swatkoski S, Holly A, Lee LC, Giroux V, Lee CS et al. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc Natl Acad Sci USA 2015; 112: E1724–E1733.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kumar A, Zhang KY . Advances in the development of SUMO specific protease (SENP) inhibitors. Comput Struct Biotechnol J 2015; 13: 204–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zhao R, Choi BY, Lee MH, Bode AM, Dong Z . Implications of Genetic and Epigenetic Alterations of CDKN2A (p16(INK4a)) in cancer. EBioMedicine 2016; 8: 30–39.

    PubMed  PubMed Central  Google Scholar 

  130. Giuliano S, Cheli Y, Ohanna M, Bonet C, Beuret L, Bille K et al. Microphthalmia-associated transcription factor controls the DNA damage response and a lineage-specific senescence program in melanomas. Cancer Res 2010; 70: 3813–3822.

    CAS  PubMed  Google Scholar 

  131. Ohanna M, Giuliano S, Bonet C, Imbert V, Hofman V, Zangari J et al. Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). Genes Dev 2011; 25: 1245–1261.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Strub T, Giuliano S, Ye T, Bonet C, Keime C, Kobi D et al. Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma. Oncogene 2011; 30: 2319–2332.

    CAS  PubMed  Google Scholar 

  133. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109: 335–346.

    CAS  PubMed  Google Scholar 

  134. te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP . DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 2002; 62: 1876–1883.

    CAS  PubMed  Google Scholar 

  135. Liu Y, Hawkins OE, Su Y, Vilgelm AE, Sobolik T, Thu YM et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-kappaB impairs this drug-induced senescence. EMBO Mol Med 2013; 5: 149–166.

    CAS  PubMed  Google Scholar 

  136. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007; 445: 656–660.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Dorr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Dabritz JH et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature 2013; 501: 421–425.

    PubMed  Google Scholar 

  138. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 2003; 22: 4212–4222.

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Coppe JP, Desprez PY, Krtolica A, Campisi J . The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010; 5: 99–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009; 11: 973–979.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 2008; 133: 1006–1018.

    CAS  PubMed  Google Scholar 

  142. Ohanna M, Cheli Y, Bonet C, Bonazzi VF, Allegra M, Giuliano S et al. Secretome from senescent melanoma engages the STAT3 pathway to favor reprogramming of naive melanoma towards a tumor-initiating cell phenotype. Oncotarget 2013; 4: 2212–2224.

    PubMed  PubMed Central  Google Scholar 

  143. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  144. Coppe JP, Rodier F, Patil CK, Freund A, Desprez PY, Campisi J . Tumor suppressor and aging biomarker p16(INK4a) induces cellular senescence without the associated inflammatory secretory phenotype. J Biol Chem 2011; 286: 36396–36403.

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 2016; 22: 78–83.

    CAS  PubMed  Google Scholar 

  146. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011; 479: 232–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW, Bourgeois BR et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 2017; 169: 132–147 e116.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kirkland JL, Tchkonia T . Clinical strategies and animal models for developing senolytic agents. Exp Gerontol 2015; 68: 19–25.

    CAS  PubMed  Google Scholar 

  149. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 2015; 14: 644–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 2016; 15: 428–435.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Haferkamp S, Borst A, Adam C, Becker TM, Motschenbacher S, Windhovel S et al. Vemurafenib induces senescence features in melanoma cells. J Invest Dermatol 2013; 133: 1601–1609.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr I Davidson (IGBMC, Strasbourg) for the analysis of the ChIP-sequencing data set by the MEME program and his helpful discussion. This work was funded by INCa grants INCa_10573 to CB and INCa_2013-070 to RB and ANR-13-BSV1-0025-01 to RB and from La ville de Nice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Bertolotto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclerc, J., Ballotti, R. & Bertolotto, C. Pathways from senescence to melanoma: focus on MITF sumoylation. Oncogene 36, 6659–6667 (2017). https://doi.org/10.1038/onc.2017.292

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.292

This article is cited by

Search

Quick links