Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo

Abstract

Alternative splicing of the oncogene murine double minute 2 (MDM2) is induced in response to genotoxic stress. MDM2-ALT1, the major splice variant generated, is known to activate the p53 pathway and impede full-length MDM2’s negative regulation of p53. Despite this perceptible tumor-suppressive role, MDM2-ALT1 is also associated with several cancers. Furthermore, expression of MDM2-ALT1 has been observed in aggressive metastatic disease in pediatric rhabdomyosarcoma (RMS), irrespective of histological subtype. Therefore, we generated a transgenic MDM2-ALT1 mouse model that would allow us to investigate the effects of this splice variant on the progression of tumorigenesis. Here we show that when MDM2-ALT1 is ubiquitously expressed in p53 null mice it leads to increased incidence of spindle cell sarcomas, including RMS. Our data provide evidence that constitutive MDM2-ALT1 expression is itself an oncogenic lesion that aggravates the tumorigenesis induced by p53 loss. On the contrary, when MDM2-ALT1 is expressed solely in B-cells in the presence of homozygous wild-type p53 it leads to significantly increased lymphomagenesis (56%) when compared with control mice (27%). However, this phenotype is observable only at later stages in life (18 months). Moreover, flow cytometric analyses for B-cell markers revealed an MDM2-ALT1-associated decrease in the B-cell population of the spleens of these animals. Our data suggest that the B-cell loss is p53 dependent and is a response mounted to persistent MDM2-ALT1 expression in a wild-type p53 background. Overall, our findings highlight the importance of an MDM2 splice variant as a critical modifier of both p53-dependent and -independent tumorigenesis, underscoring the complexity of MDM2 posttranscriptional regulation in cancer. Furthermore, MDM2-ALT1-expressing p53 null mice represent a novel mouse model of fusion-negative RMS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Davis RJ, Barr FG . Fusion genes resulting from alternative chromosomal translocations are overexpressed by gene-specific mechanisms in alveolar rhabdomyosarcoma. Proc Natl Acad Sci USA 1997; 94: 8047–8051.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hachitanda Y, Toyoshima S, Akazawa K, Tsuneyoshi M . N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologic features. Mod Pathol 1998; 11: 1222–1227.

    CAS  PubMed  Google Scholar 

  3. Minniti CP, Tsokos M, Newton WA, Helman LJ . Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol 1994; 101: 198–203.

    CAS  PubMed  Google Scholar 

  4. Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J et al. NF-kappaB-YY1-miR-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell 2008; 14: 369–381.

    CAS  PubMed  Google Scholar 

  5. Xia SJ, Pressey JG, Barr FG . Molecular pathogenesis of rhabdomyosarcoma. Cancer Biol Ther 2002; 1: 97–104.

    CAS  PubMed  Google Scholar 

  6. Tostar U, Malm CJ, Meis-Kindblom JM, Kindblom LG, Toftgard R, Unden AB . Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 2006; 208: 17–25.

    CAS  PubMed  Google Scholar 

  7. Hatley ME, Tang W, Garcia MR, Finkelstein D, Millay DP, Liu N et al. A mouse model of rhabdomyosarcoma originating from the adipocyte lineage. Cancer Cell 2012; 22: 536–546.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Fleischmann A, Jochum W, Eferl R, Witowsky J, Wagner EF . Rhabdomyosarcoma development in mice lacking Trp53 and Fos: tumor suppression by the Fos protooncogene. Cancer Cell 2003; 4: 477–482.

    CAS  PubMed  Google Scholar 

  9. Nanni P, Nicoletti G, De Giovanni C, Croci S, Astolfi A, Landuzzi L et al. Development of rhabdomyosarcoma in HER-2/neu transgenic p53 mutant mice. Cancer Res 2003; 63: 2728–2732.

    CAS  PubMed  Google Scholar 

  10. Sharp R, Recio JA, Jhappan C, Otsuka T, Liu S, Yu Y et al. Synergism between INK4a/ARF inactivation and aberrant HGF/SF signaling in rhabdomyosarcomagenesis. Nat Med 2002; 8: 1276–1280.

    CAS  PubMed  Google Scholar 

  11. Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA . Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 2007; 21: 2195–2204.

    CAS  PubMed  Google Scholar 

  12. Fernandez K, Serinagaoglu Y, Hammond S, Martin LT, Martin PT . Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. Am J Pathol 2010; 176: 416–434.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hosur V, Kavirayani A, Riefler J, Carney LMB, Lyons B, Gott B et al. Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 2012; 205: 232–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hosur V, Kavirayani A, Riefler J, Carney LM, Lyons B, Gott B et al. Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 2012; 205: 232–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zanola A, Rossi S, Faggi F, Monti E, Fanzani A . Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 2012; 16: 1377–1391.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. O'Brien D, Jacob AG, Qualman SJ, Chandler DS . Advances in pediatric rhabdomyosarcoma characterization and disease model development. Histol Histopathol 2012; 27: 13–22.

    CAS  PubMed  Google Scholar 

  17. Kubbutat MH, Jones SN, Vousden KH . Regulation of p53 stability by Mdm2. Nature 1997; 387: 299–303.

    CAS  PubMed  Google Scholar 

  18. Brooks CL, Gu W . p53 ubiquitination: Mdm2 and beyond. Mol Cell 2006; 21: 307–315.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung M-C . HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001; 3: 973–982.

    CAS  PubMed  Google Scholar 

  20. Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W . Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 2003; 302: 1972–1975.

    CAS  PubMed  Google Scholar 

  21. Pant V, Lozano G . Limiting the power of p53 through the ubiquitin proteasome pathway. Genes Dev 2014; 28: 1739–1751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Momand J, Zambetti GP, Olson DC, George D, Levine AJ . The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992; 69: 1237–1245.

    CAS  PubMed  Google Scholar 

  23. Ito A, Lai CH, Zhao X, Saito S, Hamilton MH, Appella E et al. p300/CBP-mediated p53 acetylation is commonly induced by p53-activating agents and inhibited by MDM2. EMBO J 2001; 20: 1331–1340.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274: 948–953.

    CAS  PubMed  Google Scholar 

  25. Brooks CL, Gu W . p53 regulation by ubiquitin. FEBS Lett 2011; 585: 2803–2809.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Fakharzadeh SS, Rosenblum-Vos L, Murphy M, Hoffman EK, George DL . Structure and organization of amplified DNA on double minutes containing the mdm2 oncogene. Genomics 1993; 15: 283–290.

    CAS  PubMed  Google Scholar 

  27. Tamborini E, Della Torre G, Lavarino C, Azzarelli A, Carpinelli P, Pierotti MA et al. Analysis of the molecular species generated by MDM2 gene amplification in liposarcomas. Int J Cancer 2001; 92: 790–796.

    CAS  PubMed  Google Scholar 

  28. Sigalas I, Calvert AH, Anderson JJ, Neal DE, Lunec J . Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med 1996; 2: 912–917.

    CAS  PubMed  Google Scholar 

  29. Sanchez-Aguilera A, Garcia JF, Sanchez-Beato M, Piris MA . Hodgkin's lymphoma cells express alternatively spliced forms of HDM2 with multiple effects on cell cycle control. Oncogene 2006; 25: 2565–2574.

    CAS  PubMed  Google Scholar 

  30. Matsumoto R, Tada M, Nozaki M, Zhang CL, Sawamura Y, Abe H . Short alternative splice transcripts of the mdm2 oncogene correlate to malignancy in human astrocytic neoplasms. Cancer Res 1998; 58: 609–613.

    CAS  PubMed  Google Scholar 

  31. Lukas J, Gao DQ, Keshmeshian M, Wen WH, Tsao-Wei D, Rosenberg S et al. Alternative and aberrant messenger RNA splicing of the mdm2 oncogene in invasive breast cancer. Cancer Res 2001; 61: 3212–3219.

    CAS  PubMed  Google Scholar 

  32. Kraus A, Neff F, Behn M, Schuermann M, Muenkel K, Schlegel J . Expression of alternatively spliced mdm2 transcripts correlates with stabilized wild-type p53 protein in human glioblastoma cells. Int J Cancer 1999; 80: 930–934.

    CAS  PubMed  Google Scholar 

  33. Jacob AG, O'Brien D, Singh RK, Comiskey DF, Littleton RM, Mohammad F et al. Stress-induced isoforms of MDM2 and MDM4 correlate with high-grade disease and an altered splicing network in pediatric rhabdomyosarcoma. Neoplasia 2013; 15: 1049–1063.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Hori M, Shimazaki J, Inagawa S, Itabashi M, Hori M . Alternatively spliced MDM2 transcripts in human breast cancer in relation to tumor necrosis and lymph node involvement. Pathol Int 2000; 50: 786–792.

    CAS  PubMed  Google Scholar 

  35. Evdokiou A, Atkins GJ, Bouralexis S, Hay S, Raggatt LJ, Cowled PA et al. Expression of alternatively-spliced MDM2 transcripts in giant cell tumours of bone. Int J Oncol 2001; 19: 625–632.

    CAS  PubMed  Google Scholar 

  36. Bartel F, Taylor AC, Taubert H, Harris LC . Novel mdm2 splice variants identified in pediatric rhabdomyosarcoma tumors and cell lines. Oncol Res 2001; 12: 451–457.

    CAS  PubMed  Google Scholar 

  37. Bartel F, Meye A, Wurl P, Kappler M, Bache M, Lautenschlager C et al. Amplification of the MDM2 gene, but not expression of splice variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma. Int J Cancer 2001; 95: 168–175.

    CAS  PubMed  Google Scholar 

  38. Okoro DR, Arva N, Gao C, Polotskaia A, Puente C, Rosso M et al. Endogenous human MDM2-C is highly expressed in human cancers and functions as a p53-independent growth activator. PLoS ONE 2013; 8: e77643.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chandler DS, Singh RK, Caldwell LC, Bitler JL, Lozano G . Genotoxic stress induces coordinately regulated alternative splicing of the p53 modulators MDM2 and MDM4. Cancer Res 2006; 66: 9502–9508.

    CAS  PubMed  Google Scholar 

  40. Dias CS, Liu Y, Yau A, Westrick L, Evans SC . Regulation of hdm2 by stress-induced hdm2alt1 in tumor and nontumorigenic cell lines correlating with p53 stability. Cancer Res 2006; 66: 9467–9473.

    CAS  PubMed  Google Scholar 

  41. Evans SC, Viswanathan M, Grier JD, Narayana M, El-Naggar AK, Lozano G . An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 2001; 20: 4041–4049.

    CAS  PubMed  Google Scholar 

  42. Jacob AG, Singh RK, Comiskey DF Jr., Rouhier MF, Mohammad F, Bebee TW et al. Stress-induced alternative splice forms of MDM2 and MDMX modulate the p53-pathway in distinct ways. PLoS ONE 2014; 9: e104444.

    PubMed  PubMed Central  Google Scholar 

  43. Zheng T, Wang J, Zhao Y, Zhang C, Lin M, Wang X et al. Spliced MDM2 isoforms promote mutant p53 accumulation and gain-of-function in tumorigenesis. Nat Commun 2013; 4: 2996.

    PubMed  Google Scholar 

  44. Steinman HA, Burstein E, Lengner C, Gosselin J, Pihan G, Duckett CS et al. An alternative splice form of Mdm2 induces p53-independent cell growth and tumorigenesis. J Biol Chem 2004; 279: 4877–4886.

    CAS  PubMed  Google Scholar 

  45. Fridman JS, Hernando E, Hemann MT, de Stanchina E, Cordon-Cardo C, Lowe SW . Tumor promotion by Mdm2 splice variants unable to bind p53. Cancer Res 2003; 63: 5703–5706.

    CAS  PubMed  Google Scholar 

  46. Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A . Z/AP, a double reporter for cre-mediated recombination. Dev Biol 1999; 208: 281–292.

    CAS  PubMed  Google Scholar 

  47. Donehower LA, Harvey M, Vogel H, McArthur MJ, Montgomery CA Jr., Park SH et al. Effects of genetic background on tumorigenesis in p53-deficient mice. Mol Carcinog 1995; 14: 16–22.

    CAS  PubMed  Google Scholar 

  48. McDonnell TJ, Montes de Oca Luna R, Cho S, Amelse LL, Chavez-Reyes A, Lozano G . Loss of one but not two mdm2 null alleles alters the tumour spectrum in p53 null mice. J Pathol 1999; 188: 322–328.

    CAS  PubMed  Google Scholar 

  49. Altmannsberger M, Weber K, Droste R, Osborn M . Desmin is a specific marker for rhabdomyosarcomas of human and rat origin. Am J Pathol 1985; 118: 85–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar S, Perlman E, Harris CA, Raffeld M, Tsokos M . Myogenin is a specific marker for rhabdomyosarcoma: an immunohistochemical study in paraffin-embedded tissues. Mod Pathol 2000; 13: 988–993.

    CAS  PubMed  Google Scholar 

  51. Rangdaeng S, Truong LD . Comparative immunohistochemical staining for desmin and muscle-specific actin: a study of 576 cases. Am J Clin Pathol 1991; 96: 32–45.

    CAS  PubMed  Google Scholar 

  52. de Vree PJP, de Wit E, Yilmaz M, van de Heijning M, Klous P, Verstegen MJAM et al. Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat Biotechnol 2014; 32: 1019–1025.

    CAS  PubMed  Google Scholar 

  53. Takano A, Zochi R, Hibi M, Terashima T, Katsuyama Y . Function of strawberry notch family genes in the zebrafish brain development. Kobe J Med Sci 2011; 56: E220–E230.

    PubMed  Google Scholar 

  54. Takano A, Zochi R, Hibi M, Terashima T, Katsuyama Y . Expression of strawberry notch family genes during zebrafish embryogenesis. Dev Dyn 2010; 239: 1789–1796.

    CAS  PubMed  Google Scholar 

  55. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006; 314: 268–274.

    PubMed  Google Scholar 

  56. Suzuki C, Takahashi K, Hayama S, Ishikawa N, Kato T, Ito T et al. Identification of Myc-associated protein with JmjC domain as a novel therapeutic target oncogene for lung cancer. Mol Cancer Ther 2007; 6: 542–551.

    CAS  PubMed  Google Scholar 

  57. Jung CH, Kim J, Park JK, Hwang SG, Moon SK, Kim WJ et al. Mdm2 increases cellular invasiveness by binding to and stabilizing the Slug mRNA. Cancer Lett 2013; 335: 270–277.

    CAS  PubMed  Google Scholar 

  58. Gu L, Zhu N, Zhang H, Durden DL, Feng Y, Zhou M . Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell 2009; 15: 363–375.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Singh S, Ramamoorthy M, Vaughan C, Yeudall WA, Deb S, Palit Deb S . Human oncoprotein MDM2 activates the Akt signaling pathway through an interaction with the repressor element-1 silencing transcription factor conferring a survival advantage to cancer cells. Cell Death Differ 2013; 20: 558–566.

    CAS  PubMed  Google Scholar 

  60. Gu L, Findley HW, Zhou M . MDM2 induces NF-kappaB/p65 expression transcriptionally through Sp1-binding sites: a novel, p53-independent role of MDM2 in doxorubicin resistance in acute lymphoblastic leukemia. Blood 2002; 99: 3367–3375.

    CAS  PubMed  Google Scholar 

  61. Cheng Q, Chen L, Li Z, Lane WS, Chen J . ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 2009; 28: 3857–3867.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cheng Q, Cross B, Li B, Chen L, Li Z, Chen J . Regulation of MDM2 E3 ligase activity by phosphorylation after DNA damage. Mol Cell Biol 2011; 31: 4951–4963.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gannon HS, Woda BA, Jones SN . ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 2012; 21: 668–679.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ognjanovic S, Martel G, Manivel C, Olivier M, Langer E, Hainaut P . Low prevalence of TP53 mutations and MDM2 amplifications in pediatric rhabdomyosarcoma. Sarcoma 2012; 2012: 492086.

    PubMed  PubMed Central  Google Scholar 

  65. Lynch CJ, Milner J . Loss of one p53 allele results in four-fold reduction of p53 mRNA and protein: a basis for p53 haplo-insufficiency. Oncogene 2006; 25: 3463–3470.

    CAS  PubMed  Google Scholar 

  66. Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT et al. Tumor spectrum analysis in p53-mutant mice. Curr Biol 1994; 4: 1–7.

    CAS  PubMed  Google Scholar 

  67. Walker DR, Bond JP, Tarone RE, Harris CC, Makalowski W, Boguski MS et al. Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features. Oncogene 1999; 18: 211–218.

    CAS  PubMed  Google Scholar 

  68. Dang J, Kuo ML, Eischen CM, Stepanova L, Sherr CJ, Roussel MF . The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res 2002; 62: 1222–1230.

    CAS  PubMed  Google Scholar 

  69. Haines DC, Chattopadhyay S, Ward JM . Pathology of aging B6;129 mice. Toxicol Pathol 2001; 29: 653–661.

    CAS  PubMed  Google Scholar 

  70. Taylor AC, Shu L, Danks MK, Poquette CA, Shetty S, Thayer MJ et al. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol 2000; 35: 96–103.

    CAS  PubMed  Google Scholar 

  71. Volk EL, Fan L, Schuster K, Rehg JE, Harris LC . The MDM2-A splice variant of MDM2 alters transformation in vitro and the tumor spectrum in both Arf- and p53-null models of tumorigenesis. Mol Cancer Res 2009; 7: 863–869.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A . Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 1998; 95: 15608–15612.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H et al. p53 mutant mice that display early ageing-associated phenotypes. Nature 2002; 415: 45–53.

    CAS  PubMed  Google Scholar 

  74. Abraham J, Nuñez-Álvarez Y, Hettmer S, Carrió E, Chen H-IH, Nishijo K et al. Lineage of origin in rhabdomyosarcoma informs pharmacological response. Genes Dev 2014; 28: 1578–1591.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Keller C, Arenkiel BR, Coffin CM, El-Bardeesy N, DePinho RA, Capecchi MR . Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev 2004; 18: 2614–2626.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Xiao ZX, Chen J, Levine AJ, Modjtahedi N, Xing J, Sellers WR et al. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Nature 1995; 375: 694–698.

    CAS  PubMed  Google Scholar 

  77. Yang JY, Zong CS, Xia W, Yamaguchi H, Ding Q, Xie X et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008; 10: 138–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Fu W, Ma Q, Chen L, Li P, Zhang M, Ramamoorthy S et al. MDM2 acts downstream of p53 as an E3 ligase to promote FOXO ubiquitination and degradation. J Biol Chem 2009; 284: 13987–14000.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou S, Gu L, He J, Zhang H, Zhou M . MDM2 regulates vascular endothelial growth factor mRNA stabilization in hypoxia. Mol Cell Biol 2011; 31: 4928–4937.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gu L, Zhang H, He J, Li J, Huang M, Zhou M . MDM2 regulates MYCN mRNA stabilization and translation in human neuroblastoma cells. Oncogene 2012; 31: 1342–1353.

    CAS  PubMed  Google Scholar 

  81. Yang JY, Zong CS, Xia W, Wei Y, Ali-Seyed M, Li Z et al. MDM2 promotes cell motility and invasiveness by regulating E-cadherin degradation. Mol Cell Biol 2006; 26: 7269–7282.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang YA, Lin RK, Tsai YT, Hsu HS, Yang YC, Chen CY et al. MDM2 overexpression deregulates the transcriptional control of RB/E2F leading to DNA methyltransferase 3A overexpression in lung cancer. Clin Cancer Res 2012; 18: 4325–4333.

    CAS  PubMed  Google Scholar 

  83. Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C . Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 2002; 21: 4037–4048.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bouska A, Lushnikova T, Plaza S, Eischen CM . Mdm2 promotes genetic instability and transformation independent of p53. Mol Cell Biol 2008; 28: 4862–4874.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wade M, Wang YV, Wahl GM . The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Brown DR, Thomas CA, Deb SP . The human oncoprotein MDM2 arrests the cell cycle: elimination of its cell-cycle-inhibitory function induces tumorigenesis. EMBO J 1998; 17: 2513–2525.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR et al. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 1997; 11: 714–725.

    CAS  PubMed  Google Scholar 

  88. Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev 2001; 15: 1067–1077.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stiff T, Walker SA, Cerosaletti K, Goodarzi AA, Petermann E, Concannon P et al. ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling. EMBO J 2006; 25: 5775–5782.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Carr MI, Roderick JE, Gannon HS, Kelliher MA, Jones SN . Mdm2 phosphorylation regulates its stability and has contrasting effects on oncogene and radiation-induced tumorigenesis. Cell Rep 2016; 16: 2618–2629.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 2005; 434: 907–913.

    CAS  PubMed  Google Scholar 

  92. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    CAS  PubMed  Google Scholar 

  93. Bartek J, Bartkova J, Lukas J . DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 2007; 26: 7773–7779.

    CAS  PubMed  Google Scholar 

  94. Miron K, Golan-Lev T, Dvir R, Ben-David E, Kerem B . Oncogenes create a unique landscape of fragile sites. Nat Commun 2015; 6: 7094.

    CAS  PubMed  Google Scholar 

  95. Negrini S, Gorgoulis VG, Halazonetis TD . Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11: 220–228.

    CAS  PubMed  Google Scholar 

  96. Felsher DW, Bishop JM . Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci USA 1999; 96: 3940–3944.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mai S, Fluri M, Siwarski D, Huppi K . Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Res 1996; 4: 365–371.

    CAS  PubMed  Google Scholar 

  98. Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ . The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci USA 1994; 91: 5124–5128.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ellsworth RE, Ellsworth DL, Patney HL, Deyarmin B, Love B, Hooke JA et al. Amplification of HER2 is a marker for global genomic instability. BMC Cancer 2008; 8: 297.

    PubMed  PubMed Central  Google Scholar 

  100. Carrillo AM, Bouska A, Arrate MP, Eischen CM . Mdmx promotes genomic instability independent of p53 and Mdm2. Oncogene 2015; 34: 846–856.

    CAS  PubMed  Google Scholar 

  101. Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM . Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 2005; 280: 18771–18781.

    CAS  PubMed  Google Scholar 

  102. Hong S, Pusapati RV, Powers JT, Johnson DG . Oncogenes and the DNA damage response: Myc and E2F1 engage the ATM signaling pathway to activate p53 and induce apoptosis. Cell Cycle 2006; 5: 801–803.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Matthew Rouhier for optimizing conditions for cell cycle analysis of B-cells; Juliann Rectenwald and The Ohio State University Comparative Pathology & Mouse Phenotyping Shared Resource, supported in part through NCI Cancer Center Support Grant P30 CA016058; and funding sources Alex’s Lemonade Stand, Sarcoma Foundation of America, NIH (CA133571) awarded to DSC and Pelotonia (awarded to DFC and AGJ). We also thank Dr Andras Nagy for kindly providing the plasmid used in generating the mouse models.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Chandler.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comiskey Jr, D., Jacob, A., Sanford, B. et al. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene 37, 95–106 (2018). https://doi.org/10.1038/onc.2017.282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.282

This article is cited by

Search

Quick links