Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients

Abstract

Tyrosine kinase inhibitor (TKI)-sensitive and TKI-resistant mutations of epidermal growth factor receptor (EGFR) are associated with lung adenocarcinoma. EGFR mutants were previously shown to exhibit ligand-independent activation. We have previously demonstrated that pulmonary surfactant protein D (SP-D, SFTPD) suppressed wild-type EGFR signaling by blocking ligand binding to EGFR. We herein demonstrate that SFTPD downregulates ligand-independent signaling in cells harboring EGFR mutations such as TKI-sensitive exon 19 deletion (Ex19del) and L858R mutation as well as TKI-resistant T790M mutation, subsequently suppressing cellular growth and motility. Lectin blotting and ligand blotting in lung cancer cell lines suggested that EGFR mutants express oligomannose-type N-glycans and interact with SFTPD directly. Cross-linking assay indicated that SFTPD inhibits ligand-independent dimerization of EGFR mutants. We also demonstrated that SFTPD reduced dimerization-independent phosphorylation of Ex19del and T790M EGFR mutants using point mutations that disrupted the asymmetric dimer interface. It was confirmed that SFTPD augmented the viability-suppressing effects of EGFR-TKIs. Furthermore, retrospective analysis of 121 patients with lung adenocarcinoma to examine associations between serum SFTPD levels and clinical outcome indicated that in TKI-treated patients with lung cancer harboring EGFR mutations, including Ex19del or L858R, high serum SFTPD levels correlated with a lower number of distant metastases and prolonged overall survival and progression-free survival. These findings suggest that SFTPD downregulates both TKI-sensitive and -resistant EGFR mutant signaling, and SFTPD level is correlated with clinical outcome. These findings illustrate the use of serum SFTPD level as a potential marker to estimate the efficacy of EGFR-TKIs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sharma SV, Bell DW, Settleman J, Haber DA . Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 2007; 7: 169–181.

    Article  CAS  Google Scholar 

  2. Arteaga CL, Engelman JA . ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25: 282–303.

    Article  CAS  Google Scholar 

  3. Kovacs E, Zorn JA, Huang Y, Barros T, Kuriyan J . A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 2015; 84: 739–764.

    Article  CAS  Google Scholar 

  4. Engelman JA, Janne PA . Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin Cancer Res 2008; 14: 2895–2899.

    Article  Google Scholar 

  5. Gazdar AF . Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene 2009; 28: S24–S31.

    Article  CAS  Google Scholar 

  6. Yu HA, Riely GJ, Lovly CM . Therapeutic strategies utilized in the setting of acquired resistance to EGFR tyrosine kinase inhibitors. Clin Cancer Res 2014; 20: 5898–5907.

    Article  CAS  Google Scholar 

  7. Dokala A, Thakur SS . Extracellular region of epidermal growth factor receptor: a potential target for anti-EGFR drug discovery. Oncogene 2016; 36: 2337–2344.

    Article  Google Scholar 

  8. Okabe T, Okamoto I, Tamura K, Terashima M, Yoshida T, Satoh T et al. Differential constitutive activation of the epidermal growth factor receptor in non-small cell lung cancer cells bearing EGFR gene mutation and amplification. Cancer Res 2007; 67: 2046–2053.

    Article  CAS  Google Scholar 

  9. Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J . Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 2007; 450: 741–744.

    Article  CAS  Google Scholar 

  10. Cho J, Chen L, Sangji N, Okabe T, Yonesaka K, Francis JM et al. Cetuximab response of lung cancer-derived EGF receptor mutants is associated with asymmetric dimerization. Cancer Res 2013; 73: 6770–6779.

    Article  CAS  Google Scholar 

  11. Kuroki Y, Voelker DR . Pulmonary surfactant proteins. J Biol Chem 1994; 269: 25943–25946.

    CAS  PubMed  Google Scholar 

  12. Whitsett JA, Weaver TE . Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 2002; 347: 2141–2148.

    Article  Google Scholar 

  13. Kuroki Y, Takahashi M, Nishitani C . Pulmonary collectins in innate immunity of the lung. Cell Microbiol 2007; 9: 1871–1879.

    Article  CAS  Google Scholar 

  14. Wright JR . Immunoregulatory functions of surfactant proteins. Nat Rev Immunol 2005; 5: 58–68.

    Article  CAS  Google Scholar 

  15. Crouch E, Hartshorn K, Ofek I . Collectins and pulmonary innate immunity. Immunol Rev 2000; 173: 52–65.

    Article  CAS  Google Scholar 

  16. Takahashi H, Kuroki Y, Tanaka H, Saito T, Kurokawa K, Chiba H et al. Serum levels of surfactant proteins A and D are useful biomarkers for interstitial lung disease in patients with progressive systemic sclerosis. Am J Respir Crit Care Med 2000; 162: 258–263.

    Article  CAS  Google Scholar 

  17. Takahashi H, Fujishima T, Koba H, Murakami S, Kurokawa K, Shibuya Y et al. Serum surfactant proteins A and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am J Respir Crit Care Med 2000; 162: 1109–1114.

    Article  CAS  Google Scholar 

  18. Ishii T, Hagiwara K, Ikeda S, Arai T, Mieno MN, Kumasaka T et al. Association between genetic variations in surfactant protein d and emphysema, interstitial pneumonia, and lung cancer in a Japanese population. COPD 2012; 9: 409–416.

    Article  Google Scholar 

  19. Yamaguchi H, Soda H, Nakamura Y, Takasu M, Tomonaga N, Nakano H et al. Serum levels of surfactant protein D predict the anti-tumor activity of gefitinib in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 2011; 67: 331–338.

    Article  CAS  Google Scholar 

  20. Hasegawa Y, Takahashi M, Ariki S, Asakawa D, Tajiri M, Wada Y et al. Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling. Oncogene 2015; 34: 838–845.

    Article  CAS  Google Scholar 

  21. Hase T, Sato M, Yoshida K, Girard L, Takeyama Y, Horio M et al. Pivotal role of epithelial cell adhesion molecule in the survival of lung cancer cells. Cancer Sci 2011; 102: 1493–1500.

    Article  CAS  Google Scholar 

  22. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J . An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006; 125: 1137–1149.

    Article  CAS  Google Scholar 

  23. Thiel KW, Carpenter G . Epidermal growth factor receptor juxtamembrane region regulates allosteric tyrosine kinase activation. Proc Natl Acad Sci USA 2007; 104: 19238–19243.

    Article  CAS  Google Scholar 

  24. Red Brewer M, Yun CH, Lai D, Lemmon MA, Eck MJ, Pao W . Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proc Natl Acad Sci USA 2013; 110: E3595–E3604.

    Article  Google Scholar 

  25. Betz C, Papadopoulos T, Buchwald J, Dämmrich J, Müller-Hermelink HK . Surfactant protein gene expression in metastatic and micrometastatic pulmonary adenocarcinomas and other non-small cell lung carcinomas: detection by reverse transcriptase-polymerase chain reaction. Cancer Res 1995; 55: 4283–4286.

    CAS  PubMed  Google Scholar 

  26. Takahashi H, Kuroki Y, Honda Y, Shijubo N, Hirasawa M, Fujishima T et al. Lipid analysis and surfactant-associated protein expression in lung adenocarcinoma cells from pleural effusion. Respiration 1996; 63: 390–396.

    Article  CAS  Google Scholar 

  27. Zhang F, Pao W, Umphress S, Jakowlew S, Meyer AM, Dwyer-Nield LD et al. Serum levels of surfactant protein D are increased in mice with lung tumors. Chest 2004; 125: 109 S.

    Article  Google Scholar 

  28. Voynow JA, Fischer BM, Roberts BC, Proia AD . Basal-like cells constitute the proliferating cell population in cystic fibrosis airways. Am J Respir Crit Care Med 2005; 172: 1013–1018.

    Article  Google Scholar 

  29. Shaykhiev R, Zuo WL, Chao I, Fukui T, Witover B, Brekman A et al. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc Natl Acad Sci USA 2013; 110: 12102–12107.

    Article  CAS  Google Scholar 

  30. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM . Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 2005; 7: 301–311.

    Article  CAS  Google Scholar 

  31. Ferguson KM . Structure-based view of epidermal growth factor receptor regulation. Annu Rev Biophys 2008; 37: 353–373.

    Article  CAS  Google Scholar 

  32. Yamazoe M, Nishitani C, Takahashi M, Katoh T, Ariki S, Shimizu T et al. Pulmonary surfactant protein D inhibits lipopolysaccharide (LPS)-induced inflammatory cell responses by altering LPS binding to its receptors. J Biol Chem 2008; 283: 35878–35888.

    Article  CAS  Google Scholar 

  33. Guix M, Faber AC, Wang SE, Olivares MG, Song Y, Qu S et al. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest 2008; 118: 2609–2619.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bianco R, Rosa R, Damiano V, Daniele G, Gelardi T, Garofalo S et al. Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res 2008; 14: 5069–5080.

    Article  CAS  Google Scholar 

  35. Rennard SI, Basset G, Lecossier D, O'Donnell KM, Pinkston P, Martin PG et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986; 60: 532–538.

    Article  CAS  Google Scholar 

  36. van de Graaf EA, Jansen HM, Lutter R, Alberts C, Kobesen J, de Vries IJ et al. Surfactant protein A in bronchoalveolar lavage fluid. J Lab Clin Med 1992; 120: 252–263.

    CAS  PubMed  Google Scholar 

  37. Wright JR . Immunomodulatory functions of surfactant. Physiol Rev 1997; 77: 931–962.

    Article  CAS  Google Scholar 

  38. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–2388.

    Article  CAS  Google Scholar 

  39. Mitsudomi T, Morita S, Yatabe Y, Negoro S, Okamoto I, Tsurutani J et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 2010; 11: 121–128.

    Article  CAS  Google Scholar 

  40. Pan JB, Hou YH, Zhang GJ . Correlation between efficacy of the EGFR tyrosine kinase inhibitor and serum tumor markers in lung adenocarcinoma patients. Clin Lab 2014; 60: 1439–1447.

    Article  CAS  Google Scholar 

  41. Romero-Ventosa EY, Blanco-Prieto S, Gonzalez-Pineiro AL, Rodriguez-Berrocal FJ, Pineiro-Corrales G, Paez de la Cadena M . Pretreatment levels of the serum biomarkers CEA, CYFRA 21-1, SCC and the soluble EGFR and its ligands EGF, TGF-alpha, HB-EGF in the prediction of outcome in erlotinib treated non-small-cell lung cancer patients. Springerplus 2015; 4: 171.

    Article  Google Scholar 

  42. Nagae H, Takahashi H, Kuroki Y, Honda Y, Nagata A, Ogasawara Y et al. Enzyme-linked immunosorbent assay using F(ab')2 fragment for the detection of human pulmonary surfactant protein D in sera. Clin Chim Acta 1997; 266: 157–171.

    Article  CAS  Google Scholar 

  43. Sawada K, Ariki S, Kojima T, Saito A, Yamazoe M, Nishitani C et al. Pulmonary collectins protect macrophages against pore-forming activity of Legionella pneumophila and suppress its intracellular growth. J Biol Chem 2010; 285: 8434–8443.

    Article  CAS  Google Scholar 

  44. Ohya M, Nishitani C, Sano H, Yamada C, Mitsuzawa H, Shimizu T et al. Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 2006; 45: 8657–8664.

    Article  CAS  Google Scholar 

  45. Takahashi M, Hasegawa Y, Ikeda Y, Wada Y, Tajiri M, Ariki S et al. Suppression of heregulin beta signaling by the single N-glycan deletion mutant of soluble ErbB3 protein. J Biol Chem 2013; 288: 32910–32921.

    Article  CAS  Google Scholar 

  46. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R et al. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol 2007; 2: 706–714.

    Article  Google Scholar 

  47. Nagai Y, Miyazawa H, Huqun, Tanaka T, Udagawa K, Kato M et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp. Cancer Res 2005; 65: 7276–7282.

    Article  CAS  Google Scholar 

  48. Yatabe Y, Hida T, Horio Y, Kosaka T, Takahashi T, Mitsudomi T . A rapid, sensitive assay to detect EGFR mutation in small biopsy specimens from lung cancer. J Mol Diagn 2006; 8: 335–341.

    Article  CAS  Google Scholar 

  49. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92: 205–216.

    Article  CAS  Google Scholar 

  50. National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v.4.0. Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm.

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (26860611), grants from the Northern Advancement Center for Science & Technology (H26 T-1-35) and grants from the Ito Foundation (H26-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Takahashi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umeda, Y., Hasegawa, Y., Otsuka, M. et al. Surfactant protein D inhibits activation of non-small cell lung cancer-associated mutant EGFR and affects clinical outcomes of patients. Oncogene 36, 6432–6445 (2017). https://doi.org/10.1038/onc.2017.253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.253

This article is cited by

Search

Quick links