Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The protumorigenic potential of FTY720 by promoting extramedullary hematopoiesis and MDSC accumulation

Abstract

FTY720 (also called fingolimod) is recognized as an immunosuppressant and has been approved by the Food and Drug Administration to treat refractory multiple sclerosis. However, long-term administration of FTY720 potentially increases the risk for cancer in recipients. The underlying mechanisms remain poorly understood. Herein, we provided evidence that FTY720 administration potentiated tumor growth. Mechanistically, FTY720 enhanced extramedullary hematopoiesis and massive accumulation of myeloid-derived suppressor cells (MDSCs), which actively suppressed antitumor immune responses. Granulocyte–macrophage colony-stimulating factor (GM-CSF), mainly produced by MDSCs, was identified as a key factor to mediate these effects of FTY720 in tumor microenvironment. Furthermore, we showed that FTY720 triggers MDSCs to release GM-CSF via S1P receptor 3 (S1pr3) through Rho kinase and extracellular signal-regulated kinase-dependent pathway. Thus, our findings provide mechanistic explanation for the protumorigenic potentials of FTY720 and suggest that targeting S1pr3 simultaneously may be beneficial for the patients receiving FTY720 treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cyster JG, Schwab SR . Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol 2012; 30: 69–94.

    Article  CAS  Google Scholar 

  2. Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG . S1p1 receptor signaling overrides retention mediated by g alpha i-coupled receptors to promote t cell egress. Immunity 2008; 28: 122–133.

    Article  CAS  Google Scholar 

  3. Schwab SR, Cyster JG . Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 2007; 8: 1295–1301.

    Article  CAS  Google Scholar 

  4. Mandala S, Hajdu R, Bergstrom J, Quackenbush E, Xie J, Milligan J et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 2002; 296: 346–349.

    Article  CAS  Google Scholar 

  5. Mullershausen F, Zecri F, Cetin C, Billich A, Guerini D, Seuwen K . Persistent signaling induced by fty720-phosphate is mediated by internalized s1p1 receptors. Nat Chem Biol 2009; 5: 428–434.

    Article  CAS  Google Scholar 

  6. Oo ML, Thangada S, Wu MT, Liu CH, Macdonald TL, Lynch KR et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem 2007; 282: 9082–9089.

    Article  CAS  Google Scholar 

  7. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 2010; 362: 402–415.

    Article  CAS  Google Scholar 

  8. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (freedoms ii): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 2014; 13: 545–556.

    Article  CAS  Google Scholar 

  9. Conzett KB, Kolm I, Jelcic I, Kamarachev J, Dummer R, Braun R et al. Melanoma occurring during treatment with fingolimod for multiple sclerosis: a case report. Arch Dermatol 2011; 147: 991–992.

    Article  Google Scholar 

  10. Ostrand-Rosenberg S, Sinha P . Myeloid-derived suppressor cells: Linking inflammation and cancer. J Immunol 2009; 182: 4499–4506.

    Article  CAS  Google Scholar 

  11. Sio A, Chehal MK, Tsai K, Fan X, Roberts ME, Nelson BH et al. Dysregulated hematopoiesis caused by mammary cancer is associated with epigenetic changes and hox gene expression in hematopoietic cells. Cancer Res 2013; 73: 5892–5904.

    Article  CAS  Google Scholar 

  12. Wu WC, Sun HW, Chen HT, Liang J, Yu XJ, Wu C et al. Circulating hematopoietic stem and progenitor cells are myeloid-biased in cancer patients. Proc Natl Acad Sci USA 2014; 111: 4221–4226.

    Article  CAS  Google Scholar 

  13. Sevko A, Umansky V . Myeloid-derived suppressor cells interact with tumors in terms of myelopoiesis, tumorigenesis and immunosuppression: thick as thieves. J Cancer 2013; 4: 3–11.

    Article  CAS  Google Scholar 

  14. Kim EK, Jeon I, Seo H, Park YJ, Song B, Lee KA et al. Tumor-derived osteopontin suppresses antitumor immunity by promoting extramedullary myelopoiesis. Cancer Res 2014; 74: 6705–6716.

    Article  CAS  Google Scholar 

  15. Griseri T, McKenzie BS, Schiering C, Powrie F . Dysregulated hematopoietic stem and progenitor cell activity promotes interleukin-23-driven chronic intestinal inflammation. Immunity 2012; 37: 1116–1129.

    Article  CAS  Google Scholar 

  16. Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 2009; 325: 612–616.

    Article  CAS  Google Scholar 

  17. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch J, Chudnovskiy A, Berger C et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 2012; 109: 2491–2496.

    Article  CAS  Google Scholar 

  18. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  Google Scholar 

  19. Peranzoni E, Zilio S, Marigo I, Dolcetti L, Zanovello P, Mandruzzato S et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol 2010; 22: 238–244.

    Article  CAS  Google Scholar 

  20. Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI . Antigen-specific inhibition of cd8+ t cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172: 989–999.

    Article  CAS  Google Scholar 

  21. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A et al. Il-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 2003; 170: 270–278.

    Article  CAS  Google Scholar 

  22. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI . Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181: 5791–5802.

    Article  CAS  Google Scholar 

  23. Condamine T, Gabrilovich DI . Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32: 19–25.

    Article  CAS  Google Scholar 

  24. Lee TK, Man K, Ho JW, Wang XH, Poon RT, Xu Y et al. Fty720: A promising agent for treatment of metastatic hepatocellular carcinoma. Clin Cancer Res 2005; 11: 8458–8466.

    Article  CAS  Google Scholar 

  25. Liu Q, Alinari L, Chen CS, Yan F, Dalton JT, Lapalombella R et al. Fty720 shows promising in vitro and in vivo preclinical activity by downmodulating cyclin d1 and phospho-akt in mantle cell lymphoma. Clin Cancer Res 2010; 16: 3182–3192.

    Article  CAS  Google Scholar 

  26. Saddoughi SA, Gencer S, Peterson YK, Ward KE, Mukhopadhyay A, Oaks J et al. Sphingosine analogue drug fty720 targets i2pp2a/set and mediates lung tumour suppression via activation of pp2a-ripk1-dependent necroptosis. EMBO Mol Med 2013; 5: 105–121.

    Article  CAS  Google Scholar 

  27. Pitman MR, Woodcock JM, Lopez AF, Pitson SM . Molecular targets of fty720 (fingolimod). Curr Mol Med 2012; 12: 1207–1219.

    Article  CAS  Google Scholar 

  28. Collison A, Hatchwell L, Verrills N, Wark PA, de Siqueira AP, Tooze M et al. The e3 ubiquitin ligase midline 1 promotes allergen and rhinovirus-induced asthma by inhibiting protein phosphatase 2a activity. Nat Med 2013; 19: 232–237.

    Article  CAS  Google Scholar 

  29. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al. Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and t cell immunity in pancreatic cancer. Cancer Cell 2012; 21: 822–835.

    Article  CAS  Google Scholar 

  30. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D . Oncogenic kras-induced gm-csf production promotes the development of pancreatic neoplasia. Cancer Cell 2012; 21: 836–847.

    Article  CAS  Google Scholar 

  31. Mendelson K, Evans T, Hla T . Sphingosine 1-phosphate signalling. Development 2014; 141: 5–9.

    Article  CAS  Google Scholar 

  32. Janknecht R, Ernst WH, Pingoud V, Nordheim A . Activation of ternary complex factor elk-1 by map kinases. EMBO J 1993; 12: 5097–5104.

    Article  CAS  Google Scholar 

  33. Hipskind RA, Rao VN, Mueller CG, Reddy ES, Nordheim A . Ets-related protein elk-1 is homologous to the c-fos regulatory factor p62tcf. Nature 1991; 354: 531–534.

    Article  CAS  Google Scholar 

  34. Greten TF, Manns MP, Korangy F . Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11: 802–807.

    Article  CAS  Google Scholar 

  35. Cohen JA, Chun J . Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann Neurol 2011; 69: 759–777.

    Article  CAS  Google Scholar 

  36. Yasui H, Hideshima T, Raje N, Roccaro AM, Shiraishi N, Kumar S et al. Fty720 induces apoptosis in multiple myeloma cells and overcomes drug resistance. Cancer Res 2005; 65: 7478–7484.

    Article  CAS  Google Scholar 

  37. Hung JH, Lu YS, Wang YC, Ma YH, Wang DS, Kulp SK et al. Fty720 induces apoptosis in hepatocellular carcinoma cells through activation of protein kinase c delta signaling. Cancer Res 2008; 68: 1204–1212.

    Article  CAS  Google Scholar 

  38. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on s1p receptor 1. Nature 2004; 427: 355–360.

    Article  CAS  Google Scholar 

  39. Marvel D, Gabrilovich DI . Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 2015; 125: 3356–3364.

    Article  Google Scholar 

  40. Euvrard S, Kanitakis J, Claudy A . Skin cancers after organ transplantation. N Engl J Med 2003; 348: 1681–1691.

    Article  Google Scholar 

  41. Ueha S, Shand FH, Matsushima K . Myeloid cell population dynamics in healthy and tumor-bearing mice. Int Immunopharmacol 2011; 11: 783–788.

    Article  CAS  Google Scholar 

  42. Liu G, Bi Y, Wang R, Yang H, Zhang Y, Wang X et al. Targeting s1p1 receptor protects against murine immunological hepatic injury through myeloid-derived suppressor cells. J Immunol 2014; 192: 3068–3079.

    Article  CAS  Google Scholar 

  43. Katoh H, Wang D, Daikoku T, Sun H, Dey SK, Dubois RN . Cxcr2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell 2013; 24: 631–644.

    Article  CAS  Google Scholar 

  44. Lorvik KB, Bogen B, Corthay A . Fingolimod blocks immunosurveillance of myeloma and b-cell lymphoma resulting in cancer development in mice. Blood 2012; 119: 2176–2177.

    Article  CAS  Google Scholar 

  45. Lee H, Deng J, Kujawski M, Yang C, Liu Y, Herrmann A et al. Stat3-induced s1pr1 expression is crucial for persistent stat3 activation in tumors. Nat Med 2010; 16: 1421–1428.

    Article  CAS  Google Scholar 

  46. Martinez-Moczygemba M, Huston DP . Biology of common beta receptor-signaling cytokines: IL-3, IL-5, and GM-CSF. J Allergy Clin Immunol 2003; 112: 653–665; quiz 666.

    Article  CAS  Google Scholar 

  47. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN et al. Il-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 2010; 40: 3347–3357.

    Article  CAS  Google Scholar 

  48. Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the nkp30 receptor. Hepatology 2009; 50: 799–807.

    Article  CAS  Google Scholar 

  49. Hait NC, Wise LE, Allegood JC, O'Brien M, Avni D, Reeves TM et al. Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory. Nat Neurosci 2014; 17: 971–980.

    Article  CAS  Google Scholar 

  50. Quatromoni JG, Singhal S, Bhojnagarwala P, Hancock WW, Albelda SM, Eruslanov E . An optimized disaggregation method for human lung tumors that preserves the phenotype and function of the immune cells. J Leukocyte Biol 2015; 97: 201–209.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Basic Research Program of China (2015CB553704, 2013CB530506), the National Natural Science Foundation of China (81672803, 81472647, 81272320), Beijing Natural Science Foundation (7132151), Service Industry Scientific Research of National Health and Family Planning Commission of China (2015SQ00192).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Han or G Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, T., Wang, Y. et al. The protumorigenic potential of FTY720 by promoting extramedullary hematopoiesis and MDSC accumulation. Oncogene 36, 3760–3771 (2017). https://doi.org/10.1038/onc.2017.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.2

This article is cited by

Search

Quick links