Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells

Subjects

Abstract

Chromatin remodeling factor metastatic tumor protein 1 (MTA1), one of the most upregulated oncogene in human cancer, has an important role in gene expression, cell survival and promoting hypoxic response. Successful cancer progression is dependent on the ability of cells to utilize its survival pathways for adapting to hypoxic microenvironment. Although MTA1 is a stress-responsive gene, but whether hypoxia modulates its function and its role in engaging other core stress-responsive survival pathway(s) remains unknown. Here we have discovered that MTA1 is a novel corepressor of serum and glucocorticoid-inducible kinase 1 (SGK1). Surprisingly, this regulatory corepressive function of MTA1 is lost under hypoxia, allowing upregulation of SGK1 expression and engaging the MTA1–SGK1 axis for the benefit of the cell survival. The underlying mechanism of the noticed stimulation of SGK1 expression by hypoxia includes de-repression of SGK1 transcription because of hypoxia-triggered nucleus-to-cytoplasmic translocation of MTA1. In addition, the newly recognized cytoplasmic translocation of MTA1 was dependent on the chaperoning function of heat shock protein 90 (HSP90) and co-accompanied by the formation of MTA1, HSP90 and HIF1α complex under hypoxic condition but not under normoxic condition. Hypoxia-triggered redistribution of MTA1, SGK1 upregulation and cell survival functions were compromised by a pharmacological SGK1 inhibitor. In summary, for the first time, we report MTA1 regulation of SGK1 expression, hypoxia-dependent MTA1 translocation to the cytoplasm and de-repression of SGK1 transcription. These findings illustrate how cancer cells utilize a chromatin remodeling factor to engage a core survival pathway to support its cancerous phenotypes, and reveal new facets of MTA1–SGK1 axis by a physiologic signal in cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Semenza GL . The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta 2016; 1863: 382–391.

    Article  CAS  Google Scholar 

  2. Harris AL . Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2: 38–47.

    Article  CAS  Google Scholar 

  3. Semenza GL . Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399–408.

    Article  CAS  Google Scholar 

  4. Sang N, Fang J, Srinivas V, Leshchinsky I, Caro J . Carboxyl-terminal transactivation activity of hypoxia-inducible factor 1 alpha is governed by a von Hippel-Lindau protein-independent, hydroxylation-regulated association with p300/CBP. Mol Cell Biol 2002; 22: 2984–2992.

    Article  CAS  Google Scholar 

  5. Zhang C, Cao S, Toole BP, Xu Y . Cancer may be a pathway to cell survival under persistent hypoxia and elevated ROS: a model for solid-cancer initiation and early development. Int J Cancer 2014; 136: 2001–2011.

    Article  Google Scholar 

  6. Wilson WR, Hay MP . Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011; 11: 393–410.

    Article  CAS  Google Scholar 

  7. Lang F, Perrotti N, Stournaras C . Colorectal carcinoma cells–regulation of survival and growth by SGK1. Int J Biochem Cell Biol 2010; 42: 1571–1575.

    Article  CAS  Google Scholar 

  8. Lang F, Stournaras C . Serum and glucocorticoid inducible kinase, metabolic syndrome, inflammation, and tumor growth. Hormones (Athens) 2013; 12: 160–171.

    Article  Google Scholar 

  9. Lang F, Bohmer C, Palmada M, Seebohm G, Strutz-Seebohm N, Vallon V . Pathophysiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 2006; 86: 1151–1178.

    Article  CAS  Google Scholar 

  10. Tsai YP, Wu KJ . Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134: 249–256.

    Article  CAS  Google Scholar 

  11. Johnson AB, Denko N, Barton MC . Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 2008; 640: 174–179.

    Article  CAS  Google Scholar 

  12. Li DQ, Kumar R . Unravelling the complexity and functions of MTA coregulators in human cancer. Adv Cancer Res 2015; 127: 1–47.

    Article  Google Scholar 

  13. Kumar R, Wang RA . Structure, expression and functions of MTA genes. Gene 2016; 582: 112–121.

    Article  CAS  Google Scholar 

  14. Sen N, Gui B, Kumar R . Role of MTA1 in cancer progression and metastasis. Cancer Metastasis Rev 2014; 33: 879–889.

    Article  CAS  Google Scholar 

  15. Wang RA . MTA1–a stress response protein: a master regulator of gene expression and cancer cell behavior. Cancer Metastasis Rev 2014; 33: 1001–1009.

    Article  CAS  Google Scholar 

  16. Yoo YG, Kong G, Lee MO . Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO J 2006; 25: 1231–1241.

    Article  CAS  Google Scholar 

  17. Guo X CY, Fang W, Yang W, Shi L, Zhu R . Metastasis associated protein 1 correlates with Hypoxia inducible-factor 1 alpha expression and lymphangiogenesis in esophageal cancer. Thoracic Cancer 2013; 4: 312–317.

    Article  CAS  Google Scholar 

  18. Moon HE, Cheon H, Chun KH, Lee SK, Kim YS, Jung BK et al. Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncol Rep 2006; 16: 929–935.

    CAS  PubMed  Google Scholar 

  19. Wang K, Chen Y, Ferguson SD, Leach RE . MTA1 and MTA3 regulate HIF1a expression in hypoxia-treated human trophoblast cell line HTR8/Svneo. Med J Obstet Gynecol 2013; 1: 1017.

    PubMed  PubMed Central  Google Scholar 

  20. Pakala SB, Rayala SK, Wang R-A, Ohshiro K, Mudvari P, Reddy SDN et al. MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Res 2013; 73: 3761–3770.

    Article  CAS  Google Scholar 

  21. Anacker C, Cattaneo A, Musaelyan K, Zunszain PA, Horowitz M, Molteni R et al. Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc Natl Acad Sci USA 2013; 110: 8708–8713.

    Article  CAS  Google Scholar 

  22. Cong B, Wang L, Zhu X, Li X, Liu B, Ni X . SGK1 is involved in cardioprotection of urocortin-1 against hypoxia/reoxygenation in cardiomyocytes. Can J Cardiol 2014; 30: 687–695.

    Article  Google Scholar 

  23. Rusai K, Wagner B, Roos M, Schmaderer C, Strobl M, Boini KM et al. The serum and glucocorticoid-regulated kinase 1 in hypoxic renal injury. Cell Physiol Biochem 2009; 24: 577–584.

    Article  CAS  Google Scholar 

  24. Matschke J, Wiebeck E, Hurst S, Rudner J, Jendrossek V . Role of SGK1 for fatty acid uptake, cell survival and radioresistance of NCI-H460 lung cancer cells exposed to acute or chronic cycling severe hypoxia. Radiat Oncol 2016; 11: 75.

    Article  Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  26. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  Google Scholar 

  27. Itani OA, Liu KZ, Cornish KL, Campbell JR, Thomas CP . Glucocorticoids stimulate human sgk1 gene expression by activation of a GRE in its 5'-flanking region. Am J Physiol Endocrinol Metab 2002; 283: E971–E979.

    Article  CAS  Google Scholar 

  28. Ellen TP, Ke Q, Zhang P, Costa M . NDRG1, a growth and cancer related gene: regulation of gene expression and function in normal and disease states. Carcinogenesis 2008; 29: 2–8.

    Article  CAS  Google Scholar 

  29. Liu J, Wang H, Huang C, Qian H . Subcellular localization of MTA proteins in normal and cancer cells. Cancer Metastasis Rev 2014; 33: 843–856.

    Article  CAS  Google Scholar 

  30. Newman B, Liu Y, Lee HF, Sun D, Wang Y . HSP90 inhibitor 17-AAG selectively eradicates lymphoma stem cells. Cancer Res 2012; 72: 4551–4561.

    Article  CAS  Google Scholar 

  31. Dickmanns A, Monecke T, Ficner R . Structural basis of targeting the exportin CRM1 in cancer. Cells 2015; 4: 538–568.

    Article  CAS  Google Scholar 

  32. Hall BA, Kim TY, Skor MN, Conzen SD . Serum and glucocorticoid-regulated kinase 1 (SGK1) activation in breast cancer: requirement for mTORC1 activity associates with ER-alpha expression. Breast Cancer Res Treat 2012; 135: 469–479.

    Article  CAS  Google Scholar 

  33. Sherk AB, Frigo DE, Schnackenberg CG, Bray JD, Laping NJ, Trizna W et al. Development of a small-molecule serum- and glucocorticoid-regulated kinase-1 antagonist and its evaluation as a prostate cancer therapeutic. Cancer Res 2008; 68: 7475–7483.

    Article  CAS  Google Scholar 

  34. Feng X, Zhang Q, Xia S, Xia B, Zhang Y, Deng X et al. MTA1 overexpression induces cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties. Mol Cells 2014; 37: 699–704.

    Article  Google Scholar 

  35. Yu L, Su YS, Zhao J, Wang H, Li W . Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett 2013; 587: 2542–2551.

    Article  CAS  Google Scholar 

  36. Amato R, Scumaci D, D'Antona L, Iuliano R, Menniti M, Di Sanzo M et al. Sgk1 enhances RANBP1 transcript levels and decreases taxol sensitivity in RKO colon carcinoma cells. Oncogene 2013; 32: 4572–4578.

    Article  CAS  Google Scholar 

  37. Talarico C, D'Antona L, Scumaci D, Barone A, Gigliotti F, Fiumara CV et al. Preclinical model in HCC: the SGK1 kinase inhibitor SI113 blocks tumor progression in vitro and in vivo and synergizes with radiotherapy. Oncotarget 2015; 6: 37511–37525.

    Article  Google Scholar 

  38. Mizuno H, Kitada K, Nakai K, Sarai A . PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics 2009; 2: 18.

    Article  Google Scholar 

  39. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005; 102: 13550–13555.

    Article  CAS  Google Scholar 

  40. Murakami Y, Hosoi F, Izumi H, Maruyama Y, Ureshino H, Watari K et al. Identification of sites subjected to serine/threonine phosphorylation by SGK1 affecting N-myc downstream-regulated gene 1 (NDRG1)/Cap43-dependent suppression of angiogenic CXC chemokine expression in human pancreatic cancer cells. Biochem Biophys Res Commun 2010; 396: 376–381.

    Article  CAS  Google Scholar 

  41. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL . RACK1 competes with HSP90 for binding to HIF-1α and is required for O2-independent and HSP90 inhibitor-induced degradation of HIF-1α. Mol Cell 2007; 25: 207–217.

    Article  Google Scholar 

  42. Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J et al. Hypoxia-induced activation of HIF-1: role of HIF-1α-Hsp90 interaction. FEBS Lett 1999; 460: 251–256.

    Article  CAS  Google Scholar 

  43. Azeez JM, Sithul H, Hariharan I, Sreekumar S, Prabhakar J, Sreeja S et al. Progesterone regulates the proliferation of breast cancer cells—in vitro evidence. Drug Des Dev Ther 2015; 9: 5987–5999.

    CAS  Google Scholar 

  44. Jordi B, Barry ST, Shantanu B, Alexis HR, Mariana L-Q, Penelope LD et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 2010; 42: 715–721.

    Article  Google Scholar 

  45. Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE, Smith AL et al. Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 2003; 162: 521–531.

    Article  CAS  Google Scholar 

  46. Glück S, Ross JS, Royce M, McKenna EF Jr, Perou CM, Avisar E et al. TP53 genomics predict higher clinical and pathologic tumor response in operable early-stage breast cancer treated with docetaxel-capecitabine±trastuzumab. Breast Cancer Res Treat 2012; 132: 781–791.

    Article  Google Scholar 

  47. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Béné MC et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    Article  CAS  Google Scholar 

  48. Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A et al. Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression. Genes Chromosomes Cancer 2008; 47: 755–765.

    Article  CAS  Google Scholar 

  49. Selamat SA, Chung BS, Girard L, Zhang W, Zhang Y, Campan M et al. Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Res 2012; 22: 1197–1211.

    Article  CAS  Google Scholar 

  50. Stegmaier K, Ross KN, Colavito SA, O'Malley S, Stockwell BR, Golub TR . Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 2004; 36: 257–263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Christie P Thomas, University of Iowa for the promoter construct pGL3bas_hsgkF4R4, Nirmalya Sen from Kumar’s laboratory for identifying SGK1 as a MTA1 target from an in-house, microarray data set generated using NIH grant CA098823. Assistance from Vipin Mohan Dan for MTT analyses, Indu Ramachandran (Core facility for FACS), Confocal Microscopy facility, as well as Prakash R and Ishaque P (Central Cell Line Repository) for hypoxia standardization. This work was supported by Department of Biotechnology, Government of India and Hezlin Marzook is supported by a Senior Research Fellowship from the Council of Science and Industrial Research (09/716(0142)/2010-EMR-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R Kumar or M R Pillai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzook, H., Deivendran, S., George, B. et al. Cytoplasmic translocation of MTA1 coregulator promotes de-repression of SGK1 transcription in hypoxic cancer cells. Oncogene 36, 5263–5273 (2017). https://doi.org/10.1038/onc.2017.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.19

This article is cited by

Search

Quick links