Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

β-catenin downregulates Dicer to promote ovarian cancer metastasis

Abstract

Ovarian cancer is a nearly uniform lethal disease and its highly aggressive metastatic phenotype portends a poor prognosis. Lack of a well-controlled, relevant experimental model has been a major obstacle to identifying key molecules causing metastasis. Here we describe the creation of a new isogenic model of spontaneous human ovarian cancer metastasis exhibiting opposite phenotypes—highly metastatic (HM) and non-metastatic (NM)—both in vitro and in vivo. HM was unique in its ability to metastasize consistently to the peritoneum, mimicking the major dissemination route of human ovarian cancer. In contrast, NM failed to form detectable metastases, although it was equally tumorigenic. Using comparative label-free quantitative liquid chromatography tandem mass spectrometry (LC-MS/MS), we identified β-catenin, which we demonstrated for the first time as having a direct role in the pathogenesis of ovarian cancer metastasis. Our studies also revealed a previously unrecognized role of β-catenin in the downregulation of multiple microRNAs (miRNAs) through attenuating miRNA biogenesis by targeting Dicer, a key component of the miRNA-processing machinery. One such downregulated miRNAs was miR-29s involved in epithelial-to-mesenchymal transition and subsequent stem cell traits. Silencing β-catenin or overexpressing Dicer or miR-29 mimics in HM significantly reduced the ability of these cells to migrate. β-catenin-knockdown cells also failed to metastasize in an orthotopic model of ovarian cancer. Meta-analysis revealed an increase in CTNNB1 and a decrease in DICER1 expression levels in the high-risk group. These results uncover β-catenin as a critical factor in promoting ovarian cancer aggressiveness and a new mechanism linking between β-catenin and miRNA downregulation underlying this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Nguyen DX, Bos PD, Massague J . Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 2009; 9: 274–284.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.

    Article  PubMed  Google Scholar 

  3. Ayantunde AA, Parsons SL . Pattern and prognostic factors in patients with malignant ascites: a retrospective study. Ann Oncol 2007; 18: 945–949.

    Article  CAS  PubMed  Google Scholar 

  4. Ricci F, Broggini M, Damia G . Revisiting ovarian cancer preclinical models: implications for a better management of the disease. Cancer Treat Rev 2013; 39: 561–568.

    Article  CAS  PubMed  Google Scholar 

  5. Lengyel E, Burdette JE, Kenny HA, Matei D, Pilrose J, Haluska P et al. Epithelial ovarian cancer experimental models. Oncogene 2014; 33: 3619–3633.

    Article  CAS  PubMed  Google Scholar 

  6. Hasan N, Ohman AW, Dinulescu DM . The promise and challenge of ovarian cancer models. Transl Cancer Res 2015; 4: 14.

    CAS  PubMed  Google Scholar 

  7. Gamallo C, Palacios J, Moreno G, de Mora JC, Suárez A, Armas A . β-catenin expression pattern in stage I and II ovarian carcinomas: relationship with β-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol 1999; 155: 527–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee CM, Shvartsman H, Deavers MT, Wang SC, Xia W, Schmandt R et al. β-Catenin nuclear localization is associated with grade in ovarian serous carcinoma. Gynecol Oncol 2003; 88: 363–368.

    Article  CAS  PubMed  Google Scholar 

  9. Kildal W, Risberg B, Abeler VM, Kristensen GB, Sudbø J, Nesland JM et al. β-catenin expression, DNA ploidy and clinicopathological features in ovarian cancer: a study in 253 patients. Eur J Cancer 2005; 41: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  10. Wang H, Wang H, Makki MS, Wen J, Dai Y, Shi Q et al. Overexpression of β-catenin and cyclin D1 predicts a poor prognosis in ovarian serous carcinomas. Int J Clin Exp Pathol 2014; 7: 264–271.

    PubMed  Google Scholar 

  11. Brodsky AS, Fischer A, Miller DH, Vang S, MacLaughlan S, Wu HT et al. Expression profiling of primary and metastatic ovarian tumors reveals differences indicative of aggressive disease. PLoS ONE 2014; 9: e94476.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell Cycle 2009; 8: 158–166.

    Article  CAS  PubMed  Google Scholar 

  13. McCloskey CW, Goldberg RL, Carter LE, Gamwell LF, Al-Hujaily EM, Collins O et al. A new spontaneously transformed syngeneic model of high-grade serous ovarian cancer with a tumor-initiating cell population. Front Oncol 2014; 4: 53.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chau WK, Ip CK, Mak ASC, Lai HC, Wong AST . c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin–ATP-binding cassette G2 signaling. Oncogene 2013; 32: 2767–2781.

    Article  CAS  PubMed  Google Scholar 

  15. Rosanò L, Cianfrocca R, Masi S, Spinella F, Di Castro V, Biroccio A et al. β-Arrestin links endothelin A receptor to β-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc Natl Acad Sci USA 2009; 106: 2806–2811.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nagaraj AB, Joseph P, Kovalenko O, Singh S, Armstrong A, Redline R et al. Critical role of Wnt/β-catenin signaling in driving epithelial ovarian cancer platinum resistance. Oncotarget 2015; 6: 23720–23734.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Condello S, Morgan CA, Nagdas S, Cao L, Turek J, Hurley TD et al. β-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene 2015; 34: 2297–2308.

    Article  CAS  PubMed  Google Scholar 

  18. Hayes J, Peruzzi PP, Lawler S . MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20: 460–469.

    Article  CAS  PubMed  Google Scholar 

  19. Roussos ET, Condeelis JS, Patsialou A . Chemotaxis in cancer. Nat Rev Cancer 2011; 11: 573–587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buick RN, Pullano R, Trent JM . Comparative properties of five human ovarian adenocarcinoma cell lines. Cancer Res 1985; 45: 3668–3676.

    CAS  PubMed  Google Scholar 

  21. Kenny HA, Lal-Nag M, White EA, Shen M, Chiang CY, Mitra AK et al. Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy. Nat Commun 2015; 6: 6220.

    Article  CAS  PubMed  Google Scholar 

  22. Bapat SA, Mali AM, Koppikar CB, Kurrey NK . Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005; 65: 3025–3029.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 2008; 68: 4311–4320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  25. Ståhl S, Fung E, Adams C, Lengqvist J, Mörk B, Stenerlöw B et al. Proteomics and pathway analysis identifies JNK signaling as critical for high linear energy transfer radiation-induced apoptosis in non-small lung cancer cells. Mol Cell Proteomics 2009; 8: 1117–1129.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mehlen P, Puisieux A . Metastasis: a question of life or death. Nat Rev Cancer 2006; 6: 449–458.

    Article  CAS  PubMed  Google Scholar 

  27. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A et al. SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE 2013; 8: e74250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takebe N, Harris PJ, Warren RQ, Ivy SP . Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011; 8: 97–106.

    Article  CAS  PubMed  Google Scholar 

  30. Lenz HJ, Kahn M . Safely targeting cancer stem cells via selective catenin coactivator antagonism. Cancer Sci 2014; 105: 1087–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toth K, Djeha H, Ying B, Tollefson AE, Kuppuswamy M, Doronin K et al. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading, mediated by the ADP cytolytic protein, with selective replication in cancer cells with deregulated wnt signaling. Cancer Res 2004; 64: 3638–3644.

    Article  CAS  PubMed  Google Scholar 

  32. Ma H, Nguyen C, Lee KS, Kahn M . Differential roles for the coactivators CBP and p300 on TCF/β-catenin-mediated survivin gene expression. Oncogene 2005; 24: 3619–3631.

    Article  CAS  PubMed  Google Scholar 

  33. Naito AT, Shiojima I, Akazawa H, Hidaka K, Morisaki T, Kikuchi A et al. Developmental stage-specific biphasic roles of Wnt/β-catenin signaling in cardiomyogenesis and hematopoiesis. Proc Natl Acad Sci USA 2006; 103: 19812–19817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Valenta T, Hausmann G, Basler K . The many faces and functions of β‐catenin. EMBO J 2012; 31: 2714–2736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Van Den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun 2014; 5: 5203.

    Article  CAS  PubMed  Google Scholar 

  36. Pampalakis G, Diamandis EP, Katsaros D, Sotiropoulou G . Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem 2010; 43: 324–327.

    Article  CAS  PubMed  Google Scholar 

  37. Faggad A, Budczies J, Tchernitsa O, Darb‐Esfahani S, Sehouli J, Müller BM et al. Prognostic significance of Dicer expression in ovarian cancer—link to global microRNA changes and oestrogen receptor expression. J Pathol 2010; 220: 382–391.

    CAS  PubMed  Google Scholar 

  38. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM . High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci USA 2012; 109: 3921–3926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teng Y, Zhang Y, Qu K, Yang X, Fu J, Chen W et al. MicroRNA-29B (mir-29b) regulates the Warburg effect in ovarian cancer by targeting AKT2 and AKT3. Oncotarget 2015; 6: 40799–40814.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dai F, Zhang Y, Chen Y . Involvement of miR-29b signaling in the sensitivity to chemotherapy in patients with ovarian carcinoma. Hum Pathol 2014; 45: 1285–1293.

    Article  CAS  PubMed  Google Scholar 

  41. Jiang H, Zhang G, Wu JH, Jiang CP . Diverse roles of miR-29 in cancer (review). Oncol Rep 2014; 31: 1509–1516.

    Article  CAS  PubMed  Google Scholar 

  42. Yang D, Sun Y, Hu L, Zheng H, Ji P, Pecot CV . Integrated analyses identify a master microRNA regulatory network for the mesenchymal subtype in serous ovarian cancer. Cancer Cell 2013; 23: 186–199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Burgos-Ojeda D, Rueda BR, Buckanovich RJ . Ovarian cancer stem cell markers: prognostic and therapeutic implications. Cancer Lett 2012; 322: 1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD et al. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res 2012; 18: 869–881.

    Article  CAS  PubMed  Google Scholar 

  45. Kang KS, Choi YP, Gao MQ, Kang S, Kim BG, Lee JH et al. CD24+ ovary cancer cells exhibit an invasive mesenchymal phenotype. Biochem Biophys Res Commun 2013; 432: 333–338.

    Article  CAS  PubMed  Google Scholar 

  46. Latifi A, Abubaker K, Castrechini N, Ward AC, Liongue C, Dobill F et al. Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell‐like profile. J Cell Biochem 2011; 112: 2850–2864.

    Article  CAS  PubMed  Google Scholar 

  47. Kok KH, Ng MH, Ching YP, Jin DY . Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 2007; 282: 17649–17657.

    Article  CAS  PubMed  Google Scholar 

  48. Deng W, Tsao SW, Guan XY, Lucas JN, Si HX, Leung CS et al. Distinct profiles of critically short telomeres are a key determinant of different chromosome aberrations in immortalized human cells: whole-genome evidence from multiple cell lines. Oncogene 2004; 23: 9090–9101.

    Article  CAS  PubMed  Google Scholar 

  49. Vizcaíno JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I et al2016. update of the PRIDE database and related tools. Nucleic Acids Res 2016; 44: D447–D456.

    Article  PubMed  Google Scholar 

  50. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007; 5: e8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hänzelmann S, Castelo R, Guinney J . GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013; 14: 7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the assistance of the Faculty Core Facility of the Li Ka Shing Faculty of Medicine at the University of Hong Kong. The work described in this paper was supported by the Research Grant Council grant (17141216) and partially the Special Equipment Grant from the University Grants Committee of the Hong Kong Special Administrative Region, China (Project Code: SEG_HKU02). ASTW is a recipient of the Croucher Senior Research Fellowship.

Author contributions

SKYT, ASCM and S-SL conducted the in vitro and in vivo experiments and analyzed the results; YMEF performed LC-MS/MS; DW performed SKY analyses. BR and JZ performed analyses of the microarray and TCGA data sets. CMC and ASTW designed and supervised the study. All authors edited and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S T Wong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, S., Mak, A., Eva Fung, Y. et al. β-catenin downregulates Dicer to promote ovarian cancer metastasis. Oncogene 36, 5927–5938 (2017). https://doi.org/10.1038/onc.2017.185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.185

This article is cited by

Search

Quick links