Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Roles of Grainyhead-like transcription factors in cancer

Abstract

The mammalian homologs of the D. melanogaster Grainyhead gene, Grainyhead-like 1–3 (GRHL1, GRHL2 and GRHL3), are transcription factors implicated in wound healing, tubulogenesis and cancer. Their induced target genes encode diverse epithelial cell adhesion molecules, while mesenchymal genes involved in cell migration and invasion are repressed. Moreover, GRHL2 suppresses the oncogenic epithelial–mesencyhmal transition, thereby acting as a tumor suppressor. Mechanisms, some involving established cancer-related signaling/transcription factor pathways (for example, Wnt, TGF-β, mir200, ZEB1, OVOL2, p63 and p300) and translational implications of the Grainyhead proteins in cancer are discussed in this review article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Nusslein-Vollhard C, Wieschaus E, Kluding H . Mutations affecting the pattern of the larval cuticle in Drosophila: I. Zygotic loci on the second chromsome. Wilhelm Roux Arch Dev Biol 1984; 193: 267–283.

    Google Scholar 

  2. Bray SJ, Kafatos FC . Developmental function of Elf-1: an essential transcription factor during embryogenesis in Drosophila. Genes Dev 1991; 5: 1672–1683.

    CAS  PubMed  Google Scholar 

  3. Hemphälä J, Uv A, Cantera R, Bray S, Samakovlis C . Grainy head controls apical membrane growth and tube elongation in response to Branchless/FGF signalling. Development 2003; 130: 249–258.

    PubMed  Google Scholar 

  4. Almeida MS, Bray SJ . Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech Dev 2005; 122: 1282–1293.

    CAS  PubMed  Google Scholar 

  5. Mace KA, Pearson JC, McGinnis W . An Epidermal Barrier Wound Repair Pathway in Drosophila Is Mediated by grainy head. Science 2005; 308: 381–385.

    CAS  PubMed  Google Scholar 

  6. Dynlacht BD, Attardi LD, Admon A, Freeman M, Tjian R . Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes Dev 1989; 3: 1677–1688.

    CAS  PubMed  Google Scholar 

  7. Bray SJ, Burke B, Brown NH, Hirsh J . Embryonic expression pattern of a family of Drosophila proteins that interact with a central nervous system regulatory element. Genes Dev 1989; 3: 1130–1145.

    CAS  PubMed  Google Scholar 

  8. Wilanowski T, Tuckfield A, Cerruti L, O'Connell S, Saint R, Parekh V et al. A highly conserved novel family of mammalian developmental transcription factors related to Drosophila grainyhead. Mech Dev 2002; 114: 37–50.

    CAS  PubMed  Google Scholar 

  9. Ting SB Wilanowski T, Cerruti L, Zhao LL, Cunningham JM, Jane SM . The identification and characterization of human sister-of-mammalian Grainyhead (SOM) expands the grainyhead-like family of developmental transcription factors. Biochem J 2003; 370: 953–962.

    PubMed  PubMed Central  Google Scholar 

  10. Traylor-Knowles N, Hansen U, Dubuc TQ, Martindale MQ, Kaufman L, Finnerty JR . The evolutionary diversification of LSF and Grainyhead transcription factors preceded the radiation of basal animal lineages. BMC Evol Biol 2010; 10: 1–13.

    Google Scholar 

  11. Wang S, Samakovlis C . Grainy head and its target genes in epithelial morphogenesis and wound healing. Curr Top Dev Biol 2012; 98: 35–63.

    CAS  PubMed  Google Scholar 

  12. Kokoszynska K, Ostrowski J, Rychlewski L, Wyrwicz LS . The fold recognition of CP2 transcription factors gives new insights into the function and evolution of tumor suppressor protein p53. Cell Cycle 2008; 7: 2907–2915.

    CAS  PubMed  Google Scholar 

  13. Auden A, Caddy J, Wilanowski T, Ting SB, Cunningham JM, Jane SM . Spatial and temporal expression of the Grainyhead-like transcription factor family during murine development. Gene Expr Patterns 2006; 6: 964–970.

    CAS  PubMed  Google Scholar 

  14. Chen W, Dong Q, Shin KH, Kim RH, Oh JE, Park NH et al. Grainyhead-like 2 enhances the human telomerase reverse transcriptase gene expression by inhibiting DNA methylation at the 5'-CpG island in normal human keratinocytes. J Biol Chem 2013; 285: 40852–40863.

    Google Scholar 

  15. Werth M, Walentin K, Aue A, Schönheit J, Wuebken A, Pode-Shakked N et al. The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development 2010; 137: 3835–3845.

    CAS  PubMed  Google Scholar 

  16. Senga K, Mostov KE, Mitaka T, Miyajima A, Tanimizu N . Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol Biol Cell 2012; 23: 2845–2855.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Truong AB, Kretz M, Ridky TW, Kimmel R, Khavari PA . p63 regulates proliferation and differentiation of developmentally mature keratinocytes. Genes Dev 2006; 20: 3185–3197.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mehrazarin S, Chen W, Oh JE, Liu ZX, Kang KL, Yi JK et al. The p63 gene is regulated by Grainyhead-like 2 (GRHL2) through reciprocal feedback and determines the epithelial phenotype in human keratinocytes. J Biol Chem 2015; 290: 19999–20008.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen W, Xiao Liu Z, Oh JE, Shin KH, Kim RH, Jiang M et al. Grainyhead-like 2 (GRHL2) inhibits keratinocyte differentiation through epigenetic mechanism. Cell Death Dis 2012; 3: e450.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Boglev Y, Wilanowski T, Caddy J, Parekh V, Auden A, Darido C et al. The unique and cooperative roles of the Grainy head-like transcription factors in epidermal development reflect unexpected target gene specificity. Dev Biol 2011; 349: 512–522.

    CAS  PubMed  Google Scholar 

  21. Rifat Y, Parekh V, Wilanowski T, Hislop NR, Auden A, Ting SB et al. Regional neural tube closure defined by the Grainy head-like transcription factors. Dev Biol 2010; 345: 237–245.

    CAS  PubMed  Google Scholar 

  22. Pyrgaki C, Liu A, Niswander L . Grainyhead-like 2 regulates neural tube closure and adhesion molecule expression during neural fold fusion. Dev Biol 2011; 353: 38–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ting SB, Wilanowski T, Auden A, Hall M, Voss AK, Thomas T et al. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3. Nat Med 2003; 9: 1513–1519.

    CAS  PubMed  Google Scholar 

  24. Brouns MR, De Castro SC, Terwindt-Rouwenhorst EA, Massa V, Hekking JW, Hirst CS et al. Over-expression of Grhl2 causes spina bifida in the axial defects mutant mouse. Hum Mol Genet 2011; 20: 1536–1546.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ray HJ, Niswander LA . Grainyhead-like 2 downstream targets act to suppress epithelial-to-mesenchymal transition during neural tube closure. Development 2016; 143: 1192–1204.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tanimizu N, Nakamura Y, Ichinohe N, Mizuguchi T, Hirata K, Mitaka T . Hepatic biliary epithelial cells acquire epithelial integrity but lose plasticity to differentiate into hepatocytes in vitro during development. J Cell Sci 2013; 126: 5239–5246.

    CAS  PubMed  Google Scholar 

  27. Varma S, Cao Y, Tagne JB, Lakshminarayanan M, Li J, Friedman TB et al. The transcription factors Grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation. J Biol Chem 2012; 287: 37282–37295.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao X, Vockley CM, Pauli F, Newberry KM, Xue Y, Randell SH et al. Evidence for multiple roles for grainyhead-like 2 in the establishment and maintenance of human mucociliary airway epithelium. Proc Natl Acad Sci USA 2013; 110: 9356–9361.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Varma S, Mahavadi P, Sasikumar S, Cushing L, Hyland T, Rosser AE et al. Grainyhead-like 2 (GRHL2) distribution reveals novel pathophysiological differences between human idiopathic pulmonary fibrosis and mouse models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2014; 306: L405–L419.

    CAS  PubMed  Google Scholar 

  30. Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M et al. A Grainyhead-like 2/Ovo-like 2 pathway regulates renal epithelial barrier function and lumen expansion. J Am Soc Nephrol 2015; 26: 2704–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walentin K, Hinze C, Werth M, Haase N, Varma S, Morell R et al. A Grhl2-dependent gene network controls trophoblast branching morphogenesis. Development 2015; 142: 1125–1136.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Szabo R, Molinolo A, List K, Bugge TH . Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene 2006; 26: 1546–1556.

    PubMed  Google Scholar 

  33. Fabian J, Lodrini M, Oehme I, Schier MC, Thole TM, Hielscher T et al. GRHL1 acts as tumor suppressor in neuroblastoma and is negatively regulated by MYCN and HDAC3. Cancer Res 2014; 74: 2604–2616.

    CAS  PubMed  Google Scholar 

  34. Mlacki M, Darido C, Jane SM, Wilanowski T . Loss of Grainy head-like 1 is associated with disruption of the epidermal barrier and squamous cell carcinoma of the skin. PLoS One 2014; 9: e89247.

    PubMed  PubMed Central  Google Scholar 

  35. Darido C, Georgy SR, Jane SM . The role of barrier genes in epidermal malignancy. Oncogene 2016; 35: 5705–5712.

    CAS  PubMed  Google Scholar 

  36. Cieply B, Park JW, Nakauka-Ddamba A, Bebee TW, Guo Y, Shang X et al. Multiphasic and dynamic changes in alternative splicing during induction of pluripotency are coordinated by numerous RNA-binding proteins. Cell Rep 2016; 15: 247–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Darido C, Georgy SR, Wilanowski T, Dworkin S, Auden A, Zhao Q et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 2012; 20: 635–648.

    Google Scholar 

  38. Bhandari A, Gordon W, Dizon D, Hopkin AS, Gordon E, Yu Z et al. The Grainyhead transcription factor Grhl3/Get1 suppresses miR-21 expression and tumorigenesis in skin: modulation of the miR-21 target MSH2 by RNA-binding protein DND1. Oncogene 2012; 32: 1497–1507.

    PubMed  PubMed Central  Google Scholar 

  39. Hopkin AS, Gordon W, Klein RH, Espitia F, Daily K, Zeller M et al. GRHL3/GET1 and trithorax group members collaborate to activate the epidermal progenitor differentiation program. PLoS Genet 2012; 8: e1002829.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cieply B, Farris J, Denvir J, Ford HL, Frisch SM . Epithelial-mesenchymal transition and tumor suppression are controlled by a reciprocal feedback loop between ZEB1 and Grainyhead-like-2. Cancer Res 2013; 73: 6299–6309.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung VY, Tan TZ, Tan M, Wong MK, Kuay KT, Yang Z et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep 2016; 6: 19943.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Werner S, Frey S, Riethdorf S, Schulze C, Alawi M, Kling L et al. Dual roles of the transcription factor grainyhead-like 2 (GRHL2) in breast cancer. J Biol Chem 2013; 288: 22993–23008.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Xiang J, Fu X, Ran W, Chen X, Hang Z, Mao H et al. Expression and role of grainyhead-like 2 in gastric cancer. Med Oncol 2013; 30: 714.

    PubMed  Google Scholar 

  44. Xiang J, Fu X, Ran W, Wang Z . Grhl2 reduces invasion and migration through inhibition of TGFbeta-induced EMT in gastric cancer. Oncogenesis 2017; 6: e284.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Somarelli JA, Shetler S, Jolly MK, Wang X, Bartholf Dewitt S, Hish AJ et al. Mesenchymal-epithelial transition in sarcomas is controlled by the combinatorial expression of microRNA 200s and GRHL2. Mol Cell Biol 2016; 36: 2503–2513.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cieply B, Riley P 4th, Pifer PM, Widmeyer J, Addison JB, Ivanov AV et al. Suppression of the epithelial-mesenchymal transition by Grainyhead-like-2. Cancer Res 2012; 72: 2440–2453.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Farris JC, Pifer PM, Zheng L, Gottlieb E, Denvir J, Frisch SM . Grainyhead-like 2 reverses the metabolic changes induced by the oncogenic epithelial-mesenchymal transition: effects on anoikis. Mol Cancer Res 2016; 14: 528–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh B, Shamsnia A, Raythatha MR, Milligan RD, Cady AM, Madan S et al. Highly adaptable triple-negative breast cancer cells as a functional model for testing anticancer agents. PLoS One 2014; 9: e109487.

    PubMed  PubMed Central  Google Scholar 

  49. Kang X, Chen W, Kim RH, Kang MK, Park NH . Regulation of the hTERT promoter activity by MSH2, the hnRNPs K and D, and GRHL2 in human oral squamous cell carcinoma cells. Oncogene 2009; 28: 565–574.

    CAS  PubMed  Google Scholar 

  50. Dompe N, Rivers CS, Li L, Cordes S, Schwickart M, Punnoose EA et al. A whole-genome RNAi screen identifies an 8q22 gene cluster that inhibits death receptor-mediated apoptosis. Proc Natl Acad Sci USA 2011; 108: E943–E951.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Xiang X, Deng Z, Zhuang X, Ju S, Mu J, Jiang H et al. Grhl2 determines the epithelial phenotype of breast cancers and promotes tumor progression. PLoS One 2012; 7: e50781.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen W, Yi JK, Shimane T, Mehrazarin S, Lin YL, Shin KH et al. Grainyhead-like 2 regulates epithelial plasticity and stemness in oral cancer cells. Carcinogenesis 2016; 37: 500–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Riethdorf S, Frey S, Santjer S, Stoupiec M, Otto B, Riethdorf L et al. Diverse expression patterns of the EMT suppressor grainyhead-like 2 (GRHL2) in normal and tumour tissues. Int J Cancer 2016; 138: 949–963.

    CAS  PubMed  Google Scholar 

  54. Xu J, Lamouille S, Derynck R . TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156–172.

    CAS  PubMed  Google Scholar 

  55. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun 2017; 8: 14105.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Beerling E, Seinstra D, de Wit E, Kester L, van der Velden D, Maynard C et al. Plasticity between epithelial and mesenchymal states unlinks EMT from metastasis-enhancing stem cell capacity. Cell Rep 2016; 14: 2281–2288.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015; 527: 525–530.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Mitra A, Mishra L, Li S . EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget 2015; 6: 10697–10711.

    PubMed  PubMed Central  Google Scholar 

  59. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA 2009; 106: 13820–13825.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Marcucci F, Stassi G, De Maria R . Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov 2016; 15: 311–325.

    CAS  PubMed  Google Scholar 

  61. Oliveras-Ferraros C, Corominas-Faja B, Cufí S, Vazquez-Martin A, Martin-Castillo B, Iglesias JM et al. Epithelial-to-mesenchymal transition (EMT) confers primary resistance to trastuzumab (Herceptin). Cell Cycle 2012; 11: 4020–4032.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ye X, Weinberg RA . Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol 2015; 25: 675–686.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Creedon H, Gómez-Cuadrado L, Tarnauskaitė Ž, Balla J, Canel M, MacLeod KG et al. Identification of novel pathways linking epithelial-to-mesenchymal transition with resistance to HER2-targeted therapy. Oncotarget 2016; 7: 11539–11552.

    PubMed  PubMed Central  Google Scholar 

  64. Fischer KR et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015; 527: 472–476.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Morrison CD, Parvani JG, Schiemann WP . The relevance of the TGF-beta paradox to EMT-MET programs. Cancer Lett 2013; 341: 30–40.

    CAS  PubMed  Google Scholar 

  66. Martin-Belmonte F, Mostov K . Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 2008; 20: 227–234.

    CAS  PubMed  Google Scholar 

  67. Schafer M, Werner S . Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 2008; 9: 628–638.

    CAS  PubMed  Google Scholar 

  68. Senga K, Mostov KE, Mitaka T, Miyajima A, Tanimizu N . Grainyhead-like 2 regulates epithelial morphogenesis by establishing functional tight junctions through the organization of a molecular network among claudin3, claudin4, and Rab25. Mol Biol Cell 2012; 23: 2845–2855.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yamaguchi Y, Yonemura S, Takada S . Grainyhead-related transcription factor is required for duct maturation in the salivary gland and the kidney of the mouse. Development 2006; 133: 4737–4748.

    CAS  PubMed  Google Scholar 

  70. Yu Z, Mannik J, Soto A, Lin KK, Andersen B . The epidermal differentiation-associated Grainyhead gene Get1/Grhl3 also regulates urothelial differentiation. EMBO J 2009; 28: 1890–1903.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu Z, Lin KK, Bhandari A, Spencer JA, Xu X, Wang N et al. The Grainyhead-like epithelial transactivator Get-1/Grhl3 regulates epidermal terminal differentiation and interacts functionally with LMO4. Dev Biol 2006; 299: 122–136.

    CAS  PubMed  Google Scholar 

  72. Shien K, Toyooka S, Yamamoto H, Soh J, Jida M, Thu KL et al. Acquired resistance to EGFR inhibitors is associated with a manifestation of stem cell-like properties in cancer cells. Cancer Res 2013; 73: 3051–3061.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pifer PM, Farris JC, Thomas AL, Stoilov P, Denvir J, Smith DM et al. Grainyhead-like 2 inhibits the coactivator p300, suppressing tubulogenesis and the epithelial-mesenchymal transition. Mol Biol Cell 2016; 27: 2479–2492.

    PubMed  PubMed Central  Google Scholar 

  74. Grooteclaes ML, Frisch SM . Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene 2000; 19: 3823–3828.

    CAS  PubMed  Google Scholar 

  75. Zheng H, Kang Y . Multilayer control of the EMT master regulators. Oncogene 2014; 33: 1755–1763.

    CAS  PubMed  Google Scholar 

  76. Brabletz S, Brabletz T . The ZEB/miR-200 feedback loop—a motor of cellular plasticity in development and cancer? EMBO Rep 2011; 11: 670–677.

    Google Scholar 

  77. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    CAS  PubMed  Google Scholar 

  78. Gregory PA, Bracken CP, Smith E, Bert AG, Wright JA, Roslan S et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22: 1686–1698.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B et al. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 2014; 29: 59–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H et al. Interactions between beta-catenin and transforming growth factor-beta signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem 2012; 287: 7026–7038.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cho MH, Park JH, Choi HJ, Park MK, Won HY, Park YJ et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun 2015; 6: 7821.

    CAS  PubMed  Google Scholar 

  82. Qin L, Liu Z, Chen H, Xu J . The steroid receptor coactivator-1 regulates twist expression and promotes breast cancer metastasis. Cancer Res 2009; 69: 3819–3827.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu Y, Hu B, Qin L, Zhao L, Wang Q, Wang Q et al. SRC-1 and Twist1 expression positively correlates with a poor prognosis in human breast cancer. Int J Biol Sci 2014; 10: 396–403.

    PubMed  PubMed Central  Google Scholar 

  84. Santer FR, Höschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT et al. Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 2011; 10: 1644–1655.

    CAS  PubMed  Google Scholar 

  85. Yang H, Pinello CE, Luo J, Li D, Wang Y, Zhao LY et al. Small-molecule inhibitors of acetyltransferase p300 identified by high-throughput screening are potent anticancer agents. Mol Cancer Ther 2013; 12: 610–620.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Matthews CP, Colburn NH, Young MR . AP-1 a target for cancer prevention. Curr Cancer Drug Targets 2007; 7: 317–324.

    CAS  PubMed  Google Scholar 

  87. Ringel AE, Wolberger C . A new RING tossed into an old HAT. Structure 2013; 21: 1479–1481.

    CAS  PubMed  Google Scholar 

  88. Delvecchio M, Gaucher J, Aguilar-Gurrieri C, Ortega E, Panne D . Structure of the p300 catalytic core and implications for chromatin targeting and HAT regulation. Nat Struct Mol Biol 2013; 20: 1040–1046.

    CAS  PubMed  Google Scholar 

  89. Frisch SM . E1a induces the expression of epithelial characteristics. J Cell Biol 1994; 127: 1085–1096.

    CAS  PubMed  Google Scholar 

  90. Frisch SM, Mymryk JS . Adenovirus-5 E1A: paradox and paradigm. Nat Rev Mol Cell Biol 2002; 3: 441–452.

    CAS  PubMed  Google Scholar 

  91. Frisch SM . The epithelial cell default-phenotype hypothesis and its implications for cancer. Bioessays 1997; 19: 705–709.

    CAS  PubMed  Google Scholar 

  92. Jozwik KM, Chernukhin I, Serandour AA, Nagarajan S, Carroll JS . FOXA1 directs H3K4 monomethylation at enhancers via recruitment of the methyltransferase MLL3. Cell Rep 2016; 17: 2715–2723.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Martin TA . The role of tight junctions in cancer metastasis. Semin Cell Dev Biol 2014; 36: 224–231.

    CAS  PubMed  Google Scholar 

  94. Yu Z, Bhandari A, Mannik J, Pham T, Xu X, Andersen B . Grainyhead-like factor Get1/Grhl3 regulates formation of the epidermal leading edge during eyelid closure. Dev Biol 2008; 319: 56–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Humphreys RC, Hennighausen L . Transforming growth factor alpha and mouse models of human breast cancer. Oncogene 2000; 19: 1085–1091.

    CAS  PubMed  Google Scholar 

  96. Beltran AS, Graves LM, Blancafort P . Novel role of engrailed 1 as a prosurvival transcription factor in basal-like breast cancer and engineering of interference peptides block its oncogenic function. Oncogene 2014; 33: 4767–4777.

    CAS  PubMed  Google Scholar 

  97. Jeanes A, Gottardi CJ, Yap AS . Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene 2008; 27: 6920–6929.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang JD, Dubnicoff T, Liaw GJ, Bai Y, Valentine SA, Shirokawa JM et al. Binding sites for transcription factor NTF-1/Elf-1 contribute to the ventral repression of decapentaplegic. Genes Dev 1995; 9: 3177–3189.

    CAS  PubMed  Google Scholar 

  99. Zhang P, Sun Y, Ma L . ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 2015; 14: 481–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Humphries B, Yang C . The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget 2015; 6: 6472–6498.

    PubMed  PubMed Central  Google Scholar 

  101. Melino G, Memmi EM, Pelicci PG, Bernassola F . Maintaining epithelial stemness with p63. Sci Signal 2015; 8: re9.

    PubMed  Google Scholar 

  102. Clausen KA, Blish KR, Birse CE, Triplette MA, Kute TE, Russell GB et al. SOSTDC1 differentially modulates Smad and beta-catenin activation and is down-regulated in breast cancer. Breast Cancer Res Treat 2011; 129: 737–746.

    CAS  PubMed  Google Scholar 

  103. Margadant C, Kreft M, Zambruno G, Sonnenberg A . Kindlin-1 regulates integrin dynamics and adhesion turnover. PLoS One 2013; 8: e65341.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R et al. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One 2011; 6: e21650.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kessenbrock K, Wang CY, Werb Z . Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 2015; 44-46: 184–190.

    CAS  PubMed  Google Scholar 

  106. Yeung TL, Leung CS, Wong KK, Gutierrez-Hartmann A, Kwong J, Gershenson DM et al. ELF3 is a negative regulator of epithelial-mesenchymal transition in ovarian cancer cells. Oncotarget 2017; 8: 16951–16963.

    PubMed  PubMed Central  Google Scholar 

  107. List K . Matriptase: a culprit in cancer? Future Oncol 2009; 5: 97–104.

    CAS  PubMed  Google Scholar 

  108. Trzpis M, McLaughlin PM, de Leij LM, Harmsen MC . Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 2007; 171: 386–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Marazuela M, Alonso MA . Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histol Histopathol 2004; 19: 925–933.

    CAS  PubMed  Google Scholar 

  110. Gao X, Bali AS, Randell SH, Hogan BL . GRHL2 coordinates regeneration of a polarized mucociliary epithelium from basal stem cells. J Cell Biol 2015; 211: 669–682.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Previs RA, Coleman RL, Harris AL, Sood AK . Molecular pathways: translational and therapeutic implications of the notch signaling pathway in cancer. Clin Cancer Res 2015; 21: 955–961.

    CAS  PubMed  Google Scholar 

  112. Boon M, Wallmeier J, Ma L, Loges NT, Jaspers M, Olbrich H et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 2014; 5: 4418.

    CAS  PubMed  Google Scholar 

  113. Chung MI, Kwon T, Tu F, Brooks ER, Gupta R, Meyer M et al. Coordinated genomic control of ciliogenesis and cell movement by RFX2. Elife 2014; 3: e01439.

    PubMed  PubMed Central  Google Scholar 

  114. Hugo HJ, Pereira L, Suryadinata R, Drabsch Y, Gonda TJ, Gunasinghe NP et al. Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. Breast Cancer Res 2013; 15: R113.

    PubMed  PubMed Central  Google Scholar 

  115. Yang CS, Chang KY, Rana TM . Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Rep 2014; 8: 327–337.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Ramena G, Yin Y, Yu Y, Walia V, Elble RC . CLCA2 interactor EVA1 is required for mammary epithelial cell differentiation. PLoS One 2016; 11: e0147489.

    PubMed  PubMed Central  Google Scholar 

  117. Martin-Belmonte F, Perez-Moreno M . Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 2011; 12: 23–38.

    PubMed  Google Scholar 

  118. Tarbe NG, Rio MC, Hummel S, Weidle UH, Zoller M . Overexpression of the small transmembrane and glycosylated protein SMAGP supports metastasis formation of a rat pancreatic adenocarcinoma line. Int J Cancer 2005; 117: 913–922.

    CAS  PubMed  Google Scholar 

  119. Adrain C, Strisovsky K, Zettl M, Hu L, Lemberg MK, Freeman M . Mammalian EGF receptor activation by the rhomboid protease RHBDL2. EMBO Rep 2011; 12: 421–427.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Castilla MÁ, López-García MÁ, Atienza M, Rosa-Rosa JM, Díaz-Martín J, Pecero ML et al. VGLL1 expression is associated with a triple-negative basal-like phenotype in breast cancer. Endocr Relat Cancer 2014; 21: 587–599.

    CAS  PubMed  Google Scholar 

  121. Hazawa M, Lin DC, Handral H, Xu L, Chen Y, Jiang YY et al. ZNF750 is a lineage-specific tumour suppressor in squamous cell carcinoma. Oncogene 2017; 36: 2243–2254.

    CAS  PubMed  Google Scholar 

  122. Boxer LD, Barajas B, Tao S, Zhang J, Khavari PA . ZNF750 interacts with KLF4 and RCOR1, KDM1A, and CTBP1/2 chromatin regulators to repress epidermal progenitor genes and induce differentiation genes. Genes Dev 2014; 28: 2013–2026.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wilanowski T, Caddy J, Ting SB, Hislop NR, Cerruti L, Auden A et al. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice. EMBO J 2008; 27: 886–897.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Broussard JA, Getsios S, Green KJ . Desmosome regulation and signaling in disease. Cell Tissue Res 2015; 360: 501–512.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Caddy J, Wilanowski T, Darido C, Dworkin S, Ting SB, Zhao Q et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev Cell 2010; 19: 138–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ortega-Molina A, Serrano M . PTEN in cancer, metabolism, and aging. Trends Endocrinol Metab 2013; 24: 184–189.

    CAS  PubMed  Google Scholar 

  127. Jazbutyte V, Thum T . MicroRNA-21: from cancer to cardiovascular disease. Curr Drug Targets 2010; 11: 926–935.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Frisch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frisch, S., Farris, J. & Pifer, P. Roles of Grainyhead-like transcription factors in cancer. Oncogene 36, 6067–6073 (2017). https://doi.org/10.1038/onc.2017.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.178

This article is cited by

Search

Quick links