Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A viral microRNA downregulates metastasis suppressor CD82 and induces cell invasion and angiogenesis by activating the c-Met signaling

A Correction to this article was published on 06 May 2021

This article has been updated

Abstract

Kaposi’s sarcoma (KS) as the most common AIDS-associated malignancy is etiologically caused by KS-associated herpesvirus (KSHV). KS is a highly disseminated and vascularized tumor. KSHV encodes 12 pre-microRNAs that yield 25 mature microRNAs (miRNAs), but their roles in KSHV-induced tumor metastasis and angiogenesis remain largely unclear. KSHV-encoded miR-K12-6 (miR-K6) can generate two mature miRNAs, miR-K6-5p and miR-K6-3p. Recently, we have shown that miR-K6-3p induced cell migration and angiogenesis via directly targeting SH3 domain binding glutamate-rich protein (SH3BGR). Here, by using mass spectrometry, bioinformatics analysis and luciferase reporter assay, we showed that miR-K6-5p directly targeted the coding sequence of CD82 molecule (CD82), a metastasis suppressor. Ectopic expression of miR-K6-5p specifically inhibited the expression of endogenous CD82 and strongly promoted endothelial cells invasion and angiogenesis. Overexpression of CD82 significantly inhibited cell invasion and angiogenesis induced by miR-K6-5p. Mechanistically, CD82 directly interacted with c-Met to inhibit its activation. MiR-K6-5p directly repressed CD82, relieving its inhibition on c-Met activation and inducing cell invasion and angiogenesis. Lack of miR-K6 abrogated KSHV suppression of CD82 resulting in compromised KSHV activation of c-Met pathway, and KSHV induction of cell invasion and angiogenesis. In conclusion, our data show that by reducing CD82, KSHV miR-K6-5p expedites cell invasion and angiogenesis by activating the c-Met pathway. Our findings illustrate that KSHV miRNAs may be critical for the dissemination and angiogenesis of KSHV-induced malignant tumors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

References

  1. Mesri EA, Cesarman E, Boshoff C . Kaposi's sarcoma and its associated herpesvirus. Nat Rev Cancer 2010; 10: 707–719.

    Article  CAS  Google Scholar 

  2. Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM . Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 2003; 67: 175–212, table of contents.

    Article  CAS  Google Scholar 

  3. Cheung TW . AIDS-related cancer in the era of highly active antiretroviral therapy (HAART): a model of the interplay of the immune system, virus, and cancer. 'On the offensive—the Trojan Horse is being destroyed'–part A: Kaposi's sarcoma. Cancer Invest 2004; 22: 774–786.

    Article  CAS  Google Scholar 

  4. Sadagopan S, Sharma-Walia N, Veettil MV, Bottero V, Levine R, Vart RJ et al. Kaposi's sarcoma-associated herpesvirus upregulates angiogenin during infection of human dermal microvascular endothelial cells, which induces 45 S rRNA synthesis, antiapoptosis, cell proliferation, migration, and angiogenesis. J Virol 2009; 83: 3342–3364.

    Article  CAS  Google Scholar 

  5. Ensoli B, Barillari G, Gallo RC . Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi's sarcoma. Immunol Rev 1992; 127: 147–155.

    Article  CAS  Google Scholar 

  6. Pantanowitz L, Dezube BJ, Hernandez-Barrantes S, Tahan SR, Dabbous MK . Matrix metalloproteinases in the progression and regression of Kaposi's sarcoma. J Cutan Pathol 2006; 33: 793–798.

    Article  Google Scholar 

  7. Rosano L, Spinella F, Di Castro V, Nicotra MR, Albini A, Natali PG et al. Endothelin receptor blockade inhibits molecular effectors of Kaposi's sarcoma cell invasion and tumor growth in vivo. Am J Pathol 2003; 163: 753–762.

    Article  CAS  Google Scholar 

  8. Blankaert D, Simonart T, Van Vooren JP, Parent D, Liesnard C, Farber CM et al. Constitutive release of metalloproteinase-9 (92-kd type IV collagenase) by Kaposi's sarcoma cells. J Acquir Immune Defic Syndr Hum Retrovirol 1998; 18: 203–209.

    Article  CAS  Google Scholar 

  9. Cullen BR . Viruses and microRNAs: RISCy interactions with serious consequences. Genes Dev 2011; 25: 1881–1894.

    Article  CAS  Google Scholar 

  10. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR . Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci USA 2005; 102: 5570–5575.

    Article  CAS  Google Scholar 

  11. Samols MA, Hu J, Skalsky RL, Renne R . Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi's sarcoma-associated herpesvirus. J Virol 2005; 79: 9301–9305.

    Article  CAS  Google Scholar 

  12. Grundhoff A, Sullivan CS, Ganem D . A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 2006; 12: 733–750.

    Article  CAS  Google Scholar 

  13. Marshall V, Parks T, Bagni R, Wang CD, Samols MA, Hu J et al. Conservation of virally encoded microRNAs in Kaposi sarcoma—associated herpesvirus in primary effusion lymphoma cell lines and in patients with Kaposi sarcoma or multicentric Castleman disease. J Infect Dis 2007; 195: 645–659.

    Article  CAS  Google Scholar 

  14. O'Hara AJ, Chugh P, Wang L, Netto EM, Luz E, Harrington WJ et al. Pre-micro RNA signatures delineate stages of endothelial cell transformation in Kaposi sarcoma. PLoS Pathog 2009; 5: e1000389.

    Article  Google Scholar 

  15. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  16. Qin J, Li W, Gao SJ, Lu C. KSHV microRNAs: Tricks of the Devil. Trends Microbiol 2017; e-pub ahead of print 2 March 2017 doi:10.1016/j.tim.2017.02.002.

    Article  CAS  Google Scholar 

  17. Bellare P, Ganem D . Regulation of KSHV lytic switch protein expression by a virus-encoded microRNA: an evolutionary adaptation that fine-tunes lytic reactivation. Cell Host Microbe 2009; 6: 570–575.

    Article  CAS  Google Scholar 

  18. Lu F, Stedman W, Yousef M, Renne R, Lieberman PM . Epigenetic regulation of Kaposi's sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol 2010; 84: 2697–2706.

    Article  CAS  Google Scholar 

  19. Lin X, Liang D, He Z, Deng Q, Robertson ES, Lan K . miR-K12-7-5p encoded by Kaposi's sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS One 2011; 6: e16224.

    Article  CAS  Google Scholar 

  20. Lu CC, Li Z, Chu CY, Feng J, Feng J, Sun R et al. MicroRNAs encoded by Kaposi's sarcoma-associated herpesvirus regulate viral life cycle. EMBO Rep 2010; 11: 784–790.

    Article  CAS  Google Scholar 

  21. Lei X, Zhu Y, Jones T, Bai Z, Huang Y, Gao SJ . A Kaposi's sarcoma-associated herpesvirus microRNA and its variants target the transforming growth factor beta pathway to promote cell survival. J Virol 2012; 86: 11698–11711.

    Article  CAS  Google Scholar 

  22. Abend JR, Ramalingam D, Kieffer-Kwon P, Uldrick TS, Yarchoan R, Ziegelbauer JM . Kaposi's sarcoma-associated herpesvirus microRNAs target IRAK1 and MYD88, two components of the toll-like receptor/interleukin-1 R signaling cascade, to reduce inflammatory-cytokine expression. J Virol 2012; 86: 11663–11674.

    Article  CAS  Google Scholar 

  23. Qin Z, Freitas E, Sullivan R, Mohan S, Bacelieri R, Branch D et al. Upregulation of xCT by KSHV-encoded microRNAs facilitates KSHV dissemination and persistence in an environment of oxidative stress. PLoS Pathog 2010; 6: e1000742.

    Article  Google Scholar 

  24. Qin Z, Jakymiw A, Findlay V, Parsons C . KSHV-encoded microRNAs: lessons for viral cancer pathogenesis and emerging concepts. Int J Cell Biol 2012; 2012: 603961.

    Article  Google Scholar 

  25. Hu M, Wang C, Li W, Lu W, Bai Z, Qin D et al. A KSHV microRNA directly targets G protein-coupled receptor kinase 2 to promote the migration and invasion of endothelial cells by inducing CXCR2 and activating AKT signaling. PLoS Pathog 2015; 11: e1005171.

    Article  Google Scholar 

  26. Li W, Jia X, Shen C, Zhang M, Xu J, Shang Y et al. A KSHV microRNA enhances viral latency and induces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget 2016; 7: 32286–32305.

    PubMed  PubMed Central  Google Scholar 

  27. Li W, Yan Q, Ding X, Shen C, Hu M, Zhu Y et al. The SH3BGR/STAT3 pathway regulates cell migration and angiogenesis induced by a gammaherpesvirus microRNA. PLoS Pathog 2016; 12: e1005605.

    Article  Google Scholar 

  28. Zoller M . Tetraspanins: push and pull in suppressing and promoting metastasis. Nat Rev Cancer 2009; 9: 40–55.

    Article  Google Scholar 

  29. Yang X, Wei LL, Tang C, Slack R, Mueller S, Lippman ME . Overexpression of KAI1 suppresses in vitro invasiveness and in vivo metastasis in breast cancer cells. Cancer Res 2001; 61: 5284–5288.

    CAS  PubMed  Google Scholar 

  30. Nishioka C, Ikezoe T, Furihata M, Yang J, Serada S, Naka T et al. CD34(+)/CD38(−) acute myelogenous leukemia cells aberrantly express CD82 which regulates adhesion and survival of leukemia stem cells. Int J Cancer 2013; 132: 2006–2019.

    Article  CAS  Google Scholar 

  31. Liu WM, Zhang XA . KAI1/CD82, a tumor metastasis suppressor. Cancer Lett 2006; 240: 183–194.

    Article  CAS  Google Scholar 

  32. Tonoli H, Barrett JC . CD82 metastasis suppressor gene: a potential target for new therapeutics? Trends Mol Med 2005; 11: 563–570.

    Article  CAS  Google Scholar 

  33. Wei Q, Zhang F, Richardson MM, Roy NH, Rodgers W, Liu Y et al. CD82 restrains pathological angiogenesis by altering lipid raft clustering and CD44 trafficking in endothelial cells. Circulation 2014; 130: 1493–1504.

    Article  CAS  Google Scholar 

  34. Bandyopadhyay S, Zhan R, Chaudhuri A, Watabe M, Pai SK, Hirota S et al. Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 2006; 12: 933–938.

    Article  CAS  Google Scholar 

  35. Ruseva Z, Geiger PX, Hutzler P, Kotzsch M, Luber B, Schmitt M et al. Tumor suppressor KAI1 affects integrin alphavbeta3-mediated ovarian cancer cell adhesion, motility, and proliferation. Exp Cell Res 2009; 315: 1759–1771.

    Article  CAS  Google Scholar 

  36. Guo XZ, Xu JH, Liu MP, Kleeff J, Ho CK, Ren LN et al. KAI1 inhibits anchorage-dependent and -independent pancreatic cancer cell growth. Oncol Rep 2005; 14: 59–63.

    CAS  PubMed  Google Scholar 

  37. Zismanov V, Lishner M, Tartakover-Matalon S, Radnay J, Shapiro H, Drucker L . Tetraspanin-induced death of myeloma cell lines is autophagic and involves increased UPR signalling. Br J Cancer 2009; 101: 1402–1409.

    Article  CAS  Google Scholar 

  38. Tohami T, Drucker L, Shapiro H, Radnay J, Lishner M . Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J 2007; 21: 691–699.

    Article  CAS  Google Scholar 

  39. Catrina Ene AM, Borze I, Guled M, Costache M, Leen G, Sajin M et al. MicroRNA expression profiles in Kaposi's sarcoma. Pathol Oncol Res 2014; 20: 153–159.

    Article  Google Scholar 

  40. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe 2011; 10: 515–526.

    Article  CAS  Google Scholar 

  41. Sridhar SC, Miranti CK . Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene 2006; 25: 2367–2378.

    Article  CAS  Google Scholar 

  42. Todeschini AR, Dos Santos JN, Handa K, Hakomori SI . Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 2007; 282: 8123–8133.

    Article  CAS  Google Scholar 

  43. Takahashi M, Sugiura T, Abe M, Ishii K, Shirasuna K . Regulation of c-Met signaling by the tetraspanin KAI-1/CD82 affects cancer cell migration. Int J Cancer 2007; 121: 1919–1929.

    Article  CAS  Google Scholar 

  44. Dai L, Trillo-Tinoco J, Cao Y, Bonstaff K, Doyle L, Del Valle L et al. Targeting HGF/c-MET induces cell cycle arrest, DNA damage, and apoptosis for primary effusion lymphoma. Blood 2015; 126: 2821–2831.

    Article  CAS  Google Scholar 

  45. Bari R, Zhang YH, Zhang F, Wang NX, Stipp CS, Zheng JJ et al. Transmembrane interactions are needed for KAI1/CD82-mediated suppression of cancer invasion and metastasis. Am J Pathol 2009; 174: 647–660.

    Article  CAS  Google Scholar 

  46. Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J et al. Tetraspanin CD82: a suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev 2015; 34: 619–633.

    Article  CAS  Google Scholar 

  47. Hanna JA, Bordeaux J, Rimm DL, Agarwal S . The function, proteolytic processing, and histopathology of Met in cancer. Adv Cancer Res 2009; 103: 1–23.

    Article  CAS  Google Scholar 

  48. Koo BS, Kim JM, Seo ST, Yoon YH, Kwon KR, Kim SH et al. Upregulation of HGF and c-MET is associated with subclinical central lymph node metastasis in papillary thyroid microcarcinoma. Ann Surg Oncol 2014; 21: 2310–2317.

    Article  Google Scholar 

  49. Fuse N, Kuboki Y, Kuwata T, Nishina T, Kadowaki S, Shinozaki E et al. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients. Gastric Cancer 2016; 19: 183–191.

    Article  CAS  Google Scholar 

  50. Neuzillet C, Couvelard A, Tijeras-Raballand A, de Mestier L, de Gramont A, Bedossa P et al. High c-Met expression in stage I-II pancreatic adenocarcinoma: proposal for an immunostaining scoring method and correlation with poor prognosis. Histopathology 2015; 67: 664–676.

    Article  Google Scholar 

  51. Yan S, Jiao X, Zou H, Li K . Prognostic significance of c-Met in breast cancer: a meta-analysis of 6010 cases. Diagn Pathol 2015; 10: 62.

    Article  Google Scholar 

  52. Han Y, Luo Y, Zhao J, Li M, Jiang Y . Overexpression of c-Met increases the tumor invasion of human prostate LNCaP cancer cells in vitro and in vitro. Oncol Lett 2014; 8: 1618–1624.

    Article  CAS  Google Scholar 

  53. Leo C, Horn LC, Einenkel J, Hentschel B, Hockel M . Tumor hypoxia and expression of c-met in cervical cancer. Gynecol Oncol 2007; 104: 181–185.

    Article  CAS  Google Scholar 

  54. Yoshida S, Harada T, Iwabe T, Taniguchi F, Fujii A, Sakamoto Y et al. Induction of hepatocyte growth factor in stromal cells by tumor-derived basic fibroblast growth factor enhances growth and invasion of endometrial cancer. J Clin Endocrinol Metab 2002; 87: 2376–2383.

    Article  CAS  Google Scholar 

  55. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J 1991; 10: 2867–2878.

    Article  CAS  Google Scholar 

  56. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–804.

    Article  CAS  Google Scholar 

  57. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF . Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003; 4: 915–925.

    Article  CAS  Google Scholar 

  58. Li Y, Huang X, Zhang J, Li Y, Ma K . Synergistic inhibition of cell migration by tetraspanin CD82 and gangliosides occurs via the EGFR or cMet-activated Pl3K/Akt signalling pathway. Int J Biochem Cell Biol 2013; 45: 2349–2358.

    Article  CAS  Google Scholar 

  59. Hansen A, Henderson S, Lagos D, Nikitenko L, Coulter E, Roberts S et al. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev 2010; 24: 195–205.

    Article  CAS  Google Scholar 

  60. Ramalingam D, Happel C, Ziegelbauer JM . Kaposi's sarcoma-associated herpesvirus microRNAs repress breakpoint cluster region protein expression, enhance Rac1 activity, and increase in vitro angiogenesis. J Virol 2015; 89: 4249–4261.

    Article  CAS  Google Scholar 

  61. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 2007; 3: e65.

    Article  Google Scholar 

  62. Atabey N, Gao Y, Yao ZJ, Breckenridge D, Soon L, Soriano JV et al. Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions. J Biol Chem 2001; 276: 14308–14314.

    Article  CAS  Google Scholar 

  63. Royal I, Lamarche-Vane N, Lamorte L, Kaibuchi K, Park M . Activation of cdc42, rac, PAK, and rho-kinase in response to hepatocyte growth factor differentially regulates epithelial cell colony spreading and dissociation. Mol Biol Cell 2000; 11: 1709–1725.

    Article  CAS  Google Scholar 

  64. Lin HR, Ganem D . Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility. Proc Natl Acad Sci USA 2011; 108: 5148–5153.

    Article  CAS  Google Scholar 

  65. Brulois KF, Chang H, Lee AS, Ensser A, Wong LY, Toth Z et al. Construction and manipulation of a new Kaposi's sarcoma-associated herpesvirus bacterial artificial chromosome clone. J Virol 2012; 86: 9708–9720.

    Article  CAS  Google Scholar 

  66. Poon M, Zhang X, Dunsky KG, Taubman MB, Harpel PC . Apolipoprotein(a) induces monocyte chemotactic activity in human vascular endothelial cells. Circulation 1997; 96: 2514–2519.

    Article  CAS  Google Scholar 

  67. Zhu X, Guo Y, Yao S, Yan Q, Xue M, Hao T et al. Synergy between Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. Oncogene 2014; 33: 1986–1996.

    Article  CAS  Google Scholar 

  68. Zhou F, Xue M, Qin D, Zhu X, Wang C, Zhu J et al. HIV-1 Tat promotes Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6-induced angiogenesis and tumorigenesis by regulating PI3K/PTEN/AKT/GSK-3beta signaling pathway. PLoS One 2013; 8: e53145.

    Article  CAS  Google Scholar 

  69. Yan Q, Ma X, Shen C, Cao X, Feng N, Qin D et al. Inhibition of Kaposi's sarcoma-associated herpesvirus lytic replication by HIV-1 Nef and cellular microRNA hsa-miR-1258. J Virol 2014; 88: 4987–5000.

    Article  Google Scholar 

  70. Zeng Y, Zhang X, Huang Z, Cheng L, Yao S, Qin D et al. Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol 2007; 81: 2401–2417.

    Article  CAS  Google Scholar 

  71. Qin D, Zeng Y, Qian C, Huang Z, Lv Z, Cheng L et al. Induction of lytic cycle replication of Kaposi's sarcoma-associated herpesvirus by herpes simplex virus type 1: involvement of IL-10 and IL-4. Cell Microbiol 2008; 10: 713–728.

    Article  CAS  Google Scholar 

  72. Jain V, Plaisance-Bonstaff K, Sangani R, Lanier C, Dolce A, Hu J et al. A toolbox for herpesvirus miRNA research: construction of a complete set of KSHV miRNA deletion mutants. Viruses 2016; 8: pii: E54.

    Article  Google Scholar 

  73. Xue M, Yao S, Hu M, Li W, Hao T, Zhou F et al. HIV-1 Nef and KSHV oncogene K1 synergistically promote angiogenesis by inducing cellular miR-718 to regulate the PTEN/AKT/mTOR signaling pathway. Nucleic Acids Res 2014; 42: 9862–9879.

    Article  CAS  Google Scholar 

  74. Yao S, Hu M, Hao T, Li W, Xue X, Xue M et al. MiRNA-891a-5p mediates HIV-1 Tat and KSHV Orf-K1 synergistic induction of angiogenesis by activating NF-kappaB signaling. Nucleic Acids Res 2015; 43: 9362–9378.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (81761128003, 81371824 and 81401662), grants from NIH (R01CA213275, R01CA177377 and R01CA132637), and the Natural Science Youth Foundation of Jiangsu Province (BK20140908).

Author contributions

Conceived and designed the experiments: CL. Performed the experiments: WL, MH, CW and CF. Provided the reagents: CW, HL, BJR, RR and S-JG. Analyzed the data: JX, YS, FW and QY. Wrote the paper: WL, JQ, S-JG and CL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Lu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Hu, M., Wang, C. et al. A viral microRNA downregulates metastasis suppressor CD82 and induces cell invasion and angiogenesis by activating the c-Met signaling. Oncogene 36, 5407–5420 (2017). https://doi.org/10.1038/onc.2017.139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.139

This article is cited by

Search

Quick links