Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prolyl isomerase PIN1 regulates the stability, transcriptional activity and oncogenic potential of BRD4

Abstract

BRD4 has emerged as an important factor in tumorigenesis by promoting the transcription of genes involved in cancer development. However, how BRD4 is regulated in cancer cells remains largely unknown. Here, we report that the stability and functions of BRD4 are positively regulated by prolyl isomerase PIN1 in gastric cancer cells. PIN1 directly binds to phosphorylated threonine (T) 204 of BRD4 as revealed by peptide binding and crystallographic studies and enhances BRD4’s stability by inhibiting its ubiquitination. PIN1 also catalyses the isomerization of proline 205 of BRD4 and induces its conformational change, which promotes its interaction with CDK9 and increases BRD4’s transcriptional activity. Substitution of BRD4 with PIN1-binding-defective BRD4-T204A mutant in gastric cancer cells reduces BRD4’s stability, attenuates BRD4-mediated gene expression by impairing its interaction with CDK9 and suppresses gastric cancer cell proliferation, migration and invasion, and tumor formation. Our results identify BRD4 as a new target of PIN1 and suggest that interfering with their interaction could be a potential therapeutic approach for cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiang CM . Brd4 engagement from chromatin targeting to transcriptional regulation: selective contact with acetylated histone H3 and H4. F1000 Biol Rep 2009; 1: 98.

    PubMed  PubMed Central  Google Scholar 

  2. Jeanmougin F, Wurtz JM, Le Douarin B, Chambon P, Losson R . The bromodomain revisited. Trends Biochem Sci 1997; 22: 151–153.

    Article  CAS  Google Scholar 

  3. Wu SY, Chiang CM . The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J Biol Chem 2007; 282: 13141–13145.

    Article  CAS  Google Scholar 

  4. Feng Q, Zhang Z, Shea MJ, Creighton CJ, Coarfa C, Hilsenbeck SG et al. An epigenomic approach to therapy for tamoxifen-resistant breast cancer. Cell Res 2014; 24: 809–819.

    Article  CAS  Google Scholar 

  5. Huang B, Yang XD, Zhou MM, Ozato K, Chen LF . Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 2009; 29: 1375–1387.

    Article  CAS  Google Scholar 

  6. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ et al. An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nature Genet 2014; 46: 364–370.

    Article  CAS  Google Scholar 

  7. Muller S, Filippakopoulos P, Knapp S . Bromodomains as therapeutic targets. Expert Rev Mol Med 2011; 13: e29.

    Article  Google Scholar 

  8. Basheer F, Huntly BJ . BET bromodomain inhibitors in leukemia. Exp Hematol 2015; 43: 718–731.

    Article  CAS  Google Scholar 

  9. Jung M, Gelato KA, Fernandez-Montalvan A, Siegel S, Haendler B . Targeting BET bromodomains for cancer treatment. Epigenomics 2015; 7: 487–501.

    Article  CAS  Google Scholar 

  10. Wu X, Qi J, Bradner JE, Xiao G, Chen LF . Bromodomain and extraterminal (BET) protein inhibition suppresses human T cell leukemia virus 1 (HTLV-1) tax protein-mediated tumorigenesis by inhibiting nuclear factor kappaB (NF-kappaB) signaling. J Biol Chem 2013; 288: 36094–36105.

    Article  CAS  Google Scholar 

  11. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  Google Scholar 

  12. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014; 510: 278–282.

    Article  CAS  Google Scholar 

  13. French CA . Pathogenesis of NUT midline carcinoma. Annu Rev Pathol 2012; 7: 247–265.

    Article  CAS  Google Scholar 

  14. Lockwood WW, Zejnullahu K, Bradner JE, Varmus H . Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc Natl Acad Sci USA 2012; 109: 19408–19413.

    Article  CAS  Google Scholar 

  15. Zou Z, Huang B, Wu X, Zhang H, Qi J, Bradner J et al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA. Oncogene 2014; 33: 2395–2404.

    Article  CAS  Google Scholar 

  16. Gallagher SJ, Mijatov B, Gunatilake D, Gowrishankar K, Tiffen J, James W et al. Control of NF-kB activity in human melanoma by bromodomain and extra-terminal protein inhibitor I-BET151. Pigment Cell Melanoma Res 2014; 27: 1126–1137.

    Article  CAS  Google Scholar 

  17. Hu Y, Zhou J, Ye F, Xiong H, Peng L, Zheng Z et al. BRD4 inhibitor inhibits colorectal cancer growth and metastasis. Int J Mol Sci 2015; 16: 1928–1948.

    Article  CAS  Google Scholar 

  18. Segura MF, Fontanals-Cirera B, Gaziel-Sovran A, Guijarro MV, Hanniford D, Zhang G et al. BRD4 sustains melanoma proliferation and represents a new target for epigenetic therapy. Cancer Res 2013; 73: 6264–6276.

    Article  CAS  Google Scholar 

  19. Pastori C, Daniel M, Penas C, Volmar CH, Johnstone AL, Brothers SP et al. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics 2014; 9: 611–620.

    Article  CAS  Google Scholar 

  20. Belkina AC, Denis GV . BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 2012; 12: 465–477.

    Article  CAS  Google Scholar 

  21. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  Google Scholar 

  22. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O et al. Selective inhibition of BET bromodomains. Nature 2011; 468: 1067–1073.

    Article  Google Scholar 

  23. Chung CW . Small molecule bromodomain inhibitors: extending the druggable genome. Prog Med Chem 2012; 51: 1–55.

    Article  CAS  Google Scholar 

  24. Nicodeme E, Jeffrey KL, Schaefer U, Beinke S, Dewell S, Chung CW et al. Suppression of inflammation by a synthetic histone mimic. Nature 2010; 468: 1119–1123.

    Article  CAS  Google Scholar 

  25. Liou YC, Zhou XZ, Lu KP . Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011; 36: 501–514.

    Article  CAS  Google Scholar 

  26. Lu KP, Zhou XZ . The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 2007; 8: 904–916.

    Article  CAS  Google Scholar 

  27. Lu Z, Hunter T . Prolyl isomerase Pin1 in cancer. Cell Res 2014; 24: 1033–1049.

    Article  CAS  Google Scholar 

  28. Ayala G, Wang D, Wulf G, Frolov A, Li R, Sowadski J et al. The prolyl isomerase Pin1 is a novel prognostic marker in human prostate cancer. Cancer Res 2003; 63: 6244–6251.

    CAS  PubMed  Google Scholar 

  29. Bao L, Kimzey A, Sauter G, Sowadski JM, Lu KP, Wang DG . Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am J Pathol 2004; 164: 1727–1737.

    Article  CAS  Google Scholar 

  30. Shi M, Chen L, Ji J, Cai Q, Yu Y, Liu B et al. Pin1 is overexpressed and correlates with poor prognosis in gastric cancer. Cell Biochem Biophys 2015; 71: 857–864.

    Article  CAS  Google Scholar 

  31. Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, Petkova V et al. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. EMBO J 2001; 20: 3459–3472.

    Article  CAS  Google Scholar 

  32. Suizu F, Ryo A, Wulf G, Lim J, Lu KP . Pin1 regulates centrosome duplication, and its overexpression induces centrosome amplification, chromosome instability, and oncogenesis. Mol Cell Biol 2006; 26: 1463–1479.

    Article  CAS  Google Scholar 

  33. Ryo A, Liou YC, Wulf G, Nakamura M, Lee SW, Lu KP . PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol Cell Biol 2002; 22: 5281–5295.

    Article  CAS  Google Scholar 

  34. Takahashi K, Akiyama H, Shimazaki K, Uchida C, Akiyama-Okunuki H, Tomita M et al. Ablation of a peptidyl prolyl isomerase Pin1 from p53-null mice accelerated thymic hyperplasia by increasing the level of the intracellular form of Notch1. Oncogene 2007; 26: 3835–3845.

    Article  CAS  Google Scholar 

  35. Wulf G, Garg P, Liou YC, Iglehart D, Lu KP . Modeling breast cancer in vivo and ex vivo reveals an essential role of Pin1 in tumorigenesis. EMBO J 2004; 23: 3397–3407.

    Article  CAS  Google Scholar 

  36. Nicole Tsang YH, Wu XW, Lim JS, Wee Ong C, Salto-Tellez M, Ito K et al. Prolyl isomerase Pin1 downregulates tumor suppressor RUNX3 in breast cancer. Oncogene 2013; 32: 1488–1496.

    Article  CAS  Google Scholar 

  37. Chen R, Yik JH, Lew QJ, Chao SH . Brd4 and HEXIM1: multiple roles in P-TEFb regulation and cancer. BioMed Res Int 2014; 2014: 232870.

    PubMed  PubMed Central  Google Scholar 

  38. Uchida T, Takamiya M, Takahashi M, Miyashita H, Ikeda H, Terada T et al. Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem Biol 2003; 10: 15–24.

    Article  CAS  Google Scholar 

  39. Zhang Y, Daum S, Wildemann D, Zhou XZ, Verdecia MA, Bowman ME et al. Structural basis for high-affinity peptide inhibition of human Pin1. ACS Chem Biol 2007; 2: 320–328.

    Article  CAS  Google Scholar 

  40. Fischer G, Bang H, Berger E, Schellenberger A . Conformational specificity of chymotrypsin toward proline-containing substrates. Biochim Biophys Acta 1984; 791: 87–97.

    Article  CAS  Google Scholar 

  41. Stukenberg PT, Kirschner MW . Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 2001; 7: 1071–1083.

    Article  CAS  Google Scholar 

  42. Hsu TI, Lin SC, Lu PS, Chang WC, Hung CY, Yeh YM et al. MMP7-mediated cleavage of nucleolin at Asp255 induces MMP9 expression to promote tumor malignancy. Oncogene 2015; 34: 826–837.

    Article  CAS  Google Scholar 

  43. Proserpio V, Fittipaldi R, Ryall JG, Sartorelli V, Caretti G . The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 2013; 27: 1299–1312.

    Article  CAS  Google Scholar 

  44. Morishita A, Gong J, Masaki T . Targeting receptor tyrosine kinases in gastric cancer. World J Gastroenterol 2014; 20: 4536–4545.

    Article  CAS  Google Scholar 

  45. Yang S, Zhao Z, Wu R, Lu H, Zhang X, Huan C et al. Expression and biological relationship of vascular endothelial growth factor-A and matrix metalloproteinase-9 in gastric carcinoma. J Int Med Res 2011; 39: 2076–2085.

    Article  CAS  Google Scholar 

  46. Atkinson GP, Nozell SE, Harrison DK, Stonecypher MS, Chen D, Benveniste EN . The prolyl isomerase Pin1 regulates the NF-kappaB signaling pathway and interleukin-8 expression in glioblastoma. Oncogene 2009; 28: 3735–3745.

    Article  CAS  Google Scholar 

  47. Jin J, Zhang Y, Li Y, Zhang H, Li H, Yuan X et al. RNA-interference-mediated downregulation of Pin1 suppresses tumorigenicity of malignant melanoma A375 cells. Neoplasma 2013; 60: 92–100.

    Article  CAS  Google Scholar 

  48. Alsarraj J, Walker RC, Webster JD, Geiger TR, Crawford NP, Simpson RM et al. Deletion of the proline-rich region of the murine metastasis susceptibility gene Brd4 promotes epithelial-to-mesenchymal transition- and stem cell-like conversion. Cancer Res 2011; 71: 3121–3131.

    Article  CAS  Google Scholar 

  49. Alsarraj J, Faraji F, Geiger TR, Mattaini KR, Williams M, Wu J et al. BRD4 short isoform interacts with RRP1B, SIPA1 and components of the LINC complex at the inner face of the nuclear membrane. PLoS One 2013; 8: e80746.

    Article  Google Scholar 

  50. Wu SY, Lee AY, Lai HT, Zhang H, Chiang CM . Phospho switch triggers Brd4 chromatin binding and activator recruitment for gene-specific targeting. Mol Cell 2013; 49: 843–857.

    Article  CAS  Google Scholar 

  51. Wu SY, Nin DS, Lee AY, Simanski S, Kodadek T, Chiang CM . BRD4 phosphorylation regulates HPV E2-mediated viral transcription, origin replication, and cellular MMP-9 expression. Cell Rep 2016; 16: 1733–1748.

    Article  CAS  Google Scholar 

  52. Lu KP, Hanes SD, Hunter T . A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 1996; 380: 544–547.

    Article  CAS  Google Scholar 

  53. Yogesha SD, Mayfield JE, Zhang Y . Cross-talk of phosphorylation and prolyl isomerization of the C-terminal domain of RNA polymerase II. Molecules 2014; 19: 1481–1511.

    Article  CAS  Google Scholar 

  54. Jang MK, Mochizuki K, Zhou M, Jeong HS, Brady JN, Ozato K . The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol Cell 2005; 19: 523–534.

    Article  CAS  Google Scholar 

  55. Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 2005; 19: 535–545.

    Article  CAS  Google Scholar 

  56. Ai N, Hu X, Ding F, Yu B, Wang H, Lu X et al. Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation. Nucleic Acids Res 2011; 39: 9592–9604.

    Article  CAS  Google Scholar 

  57. Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL . Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev 2003; 17: 2765–2776.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members in the Chen lab for discussion. This work is supported in part by fund provided by UIUC (to LFC) and NIH grants DK085158 and CA179511 (to LFC) and Natural Science Foundation of China Grants 81361120386 (to RC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-F Chen.

Ethics declarations

Competing interests

Dr Lu and Dr Zhou are inventors of Pin1 technology, which was licensed by BIDMC to Pinteon Therapeutics. Both Dr Lu and Dr Zhou own equity in, and consult for Pinteon. Their interests were reviewed and are managed by BIDMC in accordance with its conflict of interest policy.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Dong, SH., Chen, J. et al. Prolyl isomerase PIN1 regulates the stability, transcriptional activity and oncogenic potential of BRD4. Oncogene 36, 5177–5188 (2017). https://doi.org/10.1038/onc.2017.137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.137

This article is cited by

Search

Quick links