Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor-secreted anterior gradient-2 binds to VEGF and FGF2 and enhances their activities by promoting their homodimerization

Abstract

The importance of the tumor microenvironment in targeted anticancer therapies has been well recognized. Various protein factors participate in the cross-talk between tumor cells and non-malignant cells. Anterior gradient-2 (AGR2) is overexpressed in diverse human adenocarcinomas and it exists in both intracellular and extracellular spaces. Although intracellular AGR2 has been intensively investigated, the function of secreted AGR2, especially its exact mechanism of action is still poorly understood. Here we report that the secreted AGR2 promotes the angiogenesis and the invasion of vascular endothelial cells and fibroblasts by enhancing the activities of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2). Further study indicated that AGR2 directly binds to these extracellular signaling molecules, and enhances their homodimerization. The extracellular AGR2 activity can be blocked to reduce angiogenesis and inhibit tumor growth in vitro and in vivo by a monoclonal antibody targeting the AGR2 self-dimerization region, and combined treatment with bevacizumab produced maximum inhibition effect. In conclusion, our investigation reveals a mechanism that directly links the secreted AGR2 with extracellular signaling networks, and we propose that the secreted AGR2 is a blockable molecular target, which acts as a chaperon-like enhancer to VEGF and FGF2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

AGR2:

anterior gradient-2

HUVECs:

human umbilical vein endothelial cells

BEV:

bevacizumab

TIF:

tumor interstitial fluid

αSMA:

alpha smooth muscle actin.

References

  1. Sounni NE, Noel A . Targeting the tumor microenvironment for cancer therapy. Clin Chem 2013; 59: 85–93.

    Article  CAS  Google Scholar 

  2. Balkwill FR, Capasso M, Hagemann T . The tumor microenvironment at a glance. J Cell Sci 2012; 125: 5591–5596.

    Article  CAS  Google Scholar 

  3. Hanahan D, Coussens L . Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012; 21: 309–322.

    Article  CAS  Google Scholar 

  4. Cross MJ, Claesson-Welsh L . FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci 2001; 22: 201–207.

    Article  CAS  Google Scholar 

  5. Fang H, DeClerck YA . Targeting the tumor microenvironment: from understanding pathways to effective clinical trials. Cancer Res 2013; 73: 4965–4977.

    Article  CAS  Google Scholar 

  6. Hagedorn M, Bikfalvi A . Target molecules for anti-angiogenic therapy: from basic research to clinical trials. Crit Rev Oncol Hematol 2000; 34: 89–110.

    Article  CAS  Google Scholar 

  7. Joyce JA . Therapeutic targeting of the tumor microenvironment. Cancer Cell 2005; 7: 513–520.

    Article  CAS  Google Scholar 

  8. Carmeliet P, Jain RK . Molecular mechanisms and clinical applications of angiogenesis. Nature 2011; 473: 298–307.

    Article  CAS  Google Scholar 

  9. Lieu C, Heymach J, Overman M, Tran H, Kopetz S . Beyond VEGF: Inhibition of the fibroblast growth factor pathway and antiangiogenesis. Clin Cancer Res 2011; 17: 6130–6139.

    Article  CAS  Google Scholar 

  10. Petrillo M, Scambia G, Ferrandina G . Novel targets for VEGF-independent anti-angiogenic drugs. Expert Opin Investig Drugs 2012; 21: 451–472.

    Article  CAS  Google Scholar 

  11. Moserle L, Jiménez-Valerio G, Casanovas O . Antiangiogenic therapies: going beyond their limits. Cancer Discov 2014; 4: 31–41.

    Article  CAS  Google Scholar 

  12. Aberger F, Weidinger G, Grunz H, Richter K . Anterior specification of embryonic ectoderm: The role of the Xenopus cement gland-specific gene XAG-2. Mech Dev 1998; 72: 115–130.

    Article  CAS  Google Scholar 

  13. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP . Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 2007; 318: 772–777.

    Article  CAS  Google Scholar 

  14. Brychtova V, Vojtesek B, Hrstka R . Anterior gradient 2: a novel player in tumor cell biology. Cancer Lett 2011; 304: 1–7.

    Article  CAS  Google Scholar 

  15. Chevet E, Fessart D, Delom F, Mulot A, Vojtesek B, Hrstka R et al. Emerging roles for the pro-oncogenic anterior gradient-2 in cancer development. Oncogene 2013; 32: 2499–2509.

    Article  CAS  Google Scholar 

  16. Brychtova V, Mohtar A, Vojtesek B, Hupp TR . Mechanisms of anterior gradient-2 regulation and function in cancer. Semin Cancer Biol 2015; 33: 16–24.

    Article  CAS  Google Scholar 

  17. Higa A, Mulot A, Delom F, Bouchecareilh M, Nguyên DT, Boismenu D et al. Role of pro-oncogenic protein disulfide isomerase (PDI) family member anterior gradient 2 (AGR2) in the control of endoplasmic reticulum homeostasis. J Biol Chem 286: 44855–44868.

    Article  CAS  Google Scholar 

  18. Hong XY, Wang J, Li Z . AGR2 expression is regulated by HIF-1 and contributes to growth and angiogenesis of glioblastoma. Cell Biochem Biophys 2013; 67: 1487–1495.

    Article  CAS  Google Scholar 

  19. Li D, Wu Z, Zhu Q, Guo H, Gao G, Mashausi DS et al. Agtuzumab, a humanized monoclonal antibody, blocks AGR2 function through conformational epitopes around its catalytic center. Cancer Res 2013; 73: 4320–4320.

    Google Scholar 

  20. Tsuji T, Satoyoshi R, Aiba N, Kubo T, Yanagihara K, Maeda D et al. Agr2 mediates paracrine effects on stromal fibroblasts that promote invasion by gastric signet-ring carcinoma cells. Cancer Res 2015; 75: 356–366.

    Article  CAS  Google Scholar 

  21. Ferrara N . VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2: 795–803.

    Article  CAS  Google Scholar 

  22. Teoh DGK, Secord AA . Antiangiogenic therapies in epithelial ovarian cancer. Cancer Control 2011; 18: 31–43.

    Article  Google Scholar 

  23. Gavalas NG, Liontos M, Trachana SP, Bagratuni T, Arapinis C, Liacos C et al. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci 2013; 14: 15885–15909.

    Article  Google Scholar 

  24. Schmitt J, Matei D . Targeting angiogenesis in ovarian cancer. Cancer Treat Rev 2012; 38: 272–283.

    Article  CAS  Google Scholar 

  25. Armes JE, Davies CM, Wallace S, Taheri T, Perrin LC, Autelitano DJ . AGR2 expression in ovarian tumours: a potential biomarker for endometrioid and mucinous differentiation. Pathology 2013; 45: 49–54.

    Article  CAS  Google Scholar 

  26. Edgell TA, Barraclough DL, Rajic A, Dhulia J, Lewis KJ, Armes JE et al. Increased plasma concentrations of anterior gradient 2 protein are positively associated with ovarian cancer. Clin Sci 2010; 118: 717–725.

    Article  CAS  Google Scholar 

  27. Rice GE, Edgell TA, Autelitano DJ . Evaluation of midkine and anterior gradient 2 in a multimarker panel for the detection of ovarian cancer. J Exp Clin Cancer Res 2010; 29: 62.

    Article  Google Scholar 

  28. Li Z, Zhu Q, Hu L, Chen H, Wu Z, Li D . Anterior gradient 2 is a binding stabilizer of hypoxia inducible factor-1α that enhances CoCl2-induced doxorubicin resistance in breast cancer cells. Cancer Sci 2015; 106: 1041–1049.

    Article  CAS  Google Scholar 

  29. Zweitzig DR, Smirnov DA, Connelly MC, Terstappen LWMM, O'Hara SM, Moran E . Physiological stress induces the metastasis marker AGR2 in breast cancer cells. Mol Cell Biochem 2007; 306: 255–260.

    Article  CAS  Google Scholar 

  30. Bamias A, Pignata S, Pujade-Lauraine E . Angiogenesis: a promising therapeutic target for ovarian cancer. Crit Rev Oncol Hematol 2012; 84: 314–326.

    Article  CAS  Google Scholar 

  31. Nadkarni NJ, Geest K, Neff T, Young B, Bender DP, Ahmed A et al. Microvessel density and p53 mutations in advanced-stage epithelial ovarian cancer. Cancer Lett 2013; 331: 99–104.

    Article  CAS  Google Scholar 

  32. Ferrara N, Gerber HP, LeCouter J . The biology of VEGF and its receptors. Nat Med 2003; 9: 669–676.

    Article  CAS  Google Scholar 

  33. De Crescenzo G, Hinck CS, Shu Z, Zuniga J, Yang J, Tang Y et al. Three key residues underlie the differential affinity of the TGFbeta isoforms for the TGFbeta type II receptor. J Mol Biol 2006; 355: 47–62.

    Article  CAS  Google Scholar 

  34. Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M . Structural basis for FGF receptor dimerization and activation. Cell 1999; 98: 641–650.

    Article  CAS  Google Scholar 

  35. Gray TA, Murray E, Nowicki MW, Remnant L, Scherl A, Muller P et al. Development of a fluorescent monoclonal antibody-based assay to measure the allosteric effects of synthetic peptides on self-oligomerization of AGR2 protein. Protein Sci 2013; 22: 1266–1278.

    Article  CAS  Google Scholar 

  36. Ahn SM, Simpson RJ . Body fluid proteomics: prospects for biomarker discovery. Proteomics Clin Appl 2007; 1: 1004–1015.

    Article  CAS  Google Scholar 

  37. Haslene-Hox H, Madani A, Berg KCG, Woie K, Salvesen HB, Wiig H et al. Quantification of the concentration gradient of biomarkers between ovarian carcinoma interstitial fluid and blood. BBA Clin 2014; 2: 18–23.

    Article  Google Scholar 

  38. Abuharbeid S, Czubayko F, Aigner A . The fibroblast growth factor-binding protein FGF-BP. Int J Biochem Cell Biol 2006; 38: 1463–1468.

    Article  CAS  Google Scholar 

  39. Tassi E, Al-Attar A, Aigner A, Swift MR, McDonnell K, Karavanov A et al. Enhancement of fibroblast growth factor (FGF) activity by an FGF-binding protein. J Biol Chem 2001; 276: 40247–40253.

    Article  CAS  Google Scholar 

  40. Ferrara N . Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56: 794–814.

    Article  CAS  Google Scholar 

  41. Wu ZH, Zhu Q, Gao GW, Zhou CC, Li DW . Preparation, characterization and potential application of monoclonal antibody 18A4 against AGR2. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2010; 26: 49–51.

    CAS  PubMed  Google Scholar 

  42. Ray A, Dittel BN . Isolation of mouse peritoneal cavity cells. J Vis Exp 2010; 35: 1488.

    Google Scholar 

  43. Li B, Meng Y, Zheng L, Zhang X, Tong Q, Tan W et al. Bispecific antibody to ErbB2 overcomes trastuzumab resistance through comprehensive blockade of ErbB2 heterodimerization. Cancer Res 2013; 73: 6471–6483.

    Article  CAS  Google Scholar 

  44. Zhang X, Gao F, Yu LL, Peng Y, Liu HH, Liu JY et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta Pharmacol Sin 2008; 29: 942–950.

    Article  CAS  Google Scholar 

  45. Xia Y, Song X, Li D, Ye T, Xu Y, Lin H et al. YLT192, a novel, orally active bioavailable inhibitor of VEGFR2 signaling with Potent antiangiogenic activity and antitumor efficacy in preclinical models. Sci Rep 2014; 4: 6031.

    Article  CAS  Google Scholar 

  46. Kim JY, Al-Hilal TA, Chung SW, Kim SY, Ryu GH, Son WC et al. Antiangiogenic and anticancer effect of an orally active low molecular weight heparin conjugates and its application to lung cancer chemoprevention. J Control Release 2015; 199: 122–131.

    Article  CAS  Google Scholar 

  47. Wiggins HL, Rappoport JZ . An agarose spot assay for chemotactic invasion. Biotechniques 2010; 48: 121–124.

    Article  CAS  Google Scholar 

  48. Hwang H, Kim EK, Park J, Suh PG, Cho YK . RhoA and Rac1 play independent roles in lysophosphatidic acid-induced ovarian cancer chemotaxis. Integr Biol 2014; 6: 267–276.

    Article  CAS  Google Scholar 

  49. Wiig H, Aukland K, Tenstad O . Isolation of interstitial fluid from rat mammary tumors by a centrifugation method. Am J Physiol Heart Circ Physiol 2003; 284: H416–H424.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China No. 81373319; Shanghai Science and Technology Commission Foundation No. 14431903400; Guangdong Major Science and Technology Projects Foundation No. 2012A080202014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Wu or D Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Zhu, Q., Yu, X. et al. Tumor-secreted anterior gradient-2 binds to VEGF and FGF2 and enhances their activities by promoting their homodimerization. Oncogene 36, 5098–5109 (2017). https://doi.org/10.1038/onc.2017.132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.132

This article is cited by

Search

Quick links