Abstract
Colorectal cancer (CRC) is characterized by genome-wide alterations to DNA methylation that influence gene expression and genomic stability. Less is known about the extent to which methylation is disrupted in the earliest stages of CRC development. In this study, we have combined laser-capture microdissection with reduced representation bisulfite sequencing to identify cancer-associated DNA methylation changes in human aberrant crypt foci (ACF), the earliest putative precursor to CRC. Using this approach, methylation profiles have been generated for 10 KRAS-mutant ACF and 10 CRCs harboring a KRAS mutation, as well as matched samples of normal mucosa. Of 811 differentially methylated regions (DMRs) identified in ACF, 537 (66%) were hypermethylated and 274 (34%) were hypomethylated. DMRs located within intergenic regions were heavily enriched for AP-1 transcription factor binding sites and were frequently hypomethylated. Furthermore, gene ontology analysis demonstrated that DMRs associated with promoters were enriched for genes involved in intestinal development, including homeobox genes and targets of the Polycomb repressive complex 2. Consistent with their role in the earliest stages of colonic neoplasia, 75% of the loci harboring methylation changes in ACF were also altered in CRC samples, though the magnitude of change at these sites was lesser in ACF. Although aberrant promoter methylation was associated with altered gene expression in CRC, this was not the case in ACF, suggesting the insufficiency of methylation changes to modulate gene expression in early colonic neoplasia. Altogether, these data demonstrate that DNA methylation changes, including significant hypermethylation, occur more frequently in early colonic neoplasia than previously believed, and identify epigenomic features of ACF that may provide new targets for cancer chemoprevention or lead to the development of new biomarkers for CRC risk.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Pan-cancer predictions of transcription factors mediating aberrant DNA methylation
Epigenetics & Chromatin Open Access 24 March 2022
-
A CRISPR knockout screen reveals new regulators of canonical Wnt signaling
Oncogenesis Open Access 22 September 2021
-
Epigenome-wide association study of whole blood gene expression in Framingham Heart Study participants provides molecular insight into the potential role of CHRNA5 in cigarette smoking-related lung diseases
Clinical Epigenetics Open Access 22 March 2021
Access options
Subscribe to this journal
Receive 50 print issues and online access
$259.00 per year
only $5.18 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






References
American Cancer Society. Cancer Facts & Figures 2016. American Cancer Society: Atlanta, GA, USA, 2016.
Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.
Ehrlich M . DNA hypomethylation in cancer cells. Epigenomics 2009; 1: 239–259.
Eden A, Gaudet F, Waghmare A, Jaenisch R . Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300: 455.
Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427–5440.
Sakai E, Nakajima A, Kaneda A . Accumulation of aberrant DNA methylation during colorectal cancer development. World J Gastroenterol 2014; 20: 978–987.
Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Grieu F, Watanabe G et al. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer 2006; 94: 593–598.
Silviera ML, Smith BP, Powell J, Sapienza C . Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways. Cancer Prev Res 2012; 5: 374–384.
Chai H, Brown RE . Field effect in cancer-an update. Ann Clin Lab Sci 2009; 39: 331–337.
Greenspan EJ, Jablonski MA, Rajan TV, Levine J, Belinsky GS, Rosenberg DW . Epigenetic alterations in RASSF1A in human aberrant crypt foci. Carcinogenesis 2006; 27: 1316–1322.
Chan AO-O, Broaddus RR, Houlihan PS, Issa J-PJ, Hamilton SR, Rashid A . CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol 2002; 160: 1823–1830.
Suzuki H, Watkins DN, Jair K-W, Schuebel KE, Markowitz SD, Dong Chen W et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36: 417–422.
Inoue A, Okamoto K, Fujino Y, Nakagawa T, Muguruma N, Sannomiya K et al. B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P. Br J Cancer 2015; 112: 403–412.
Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 787–793.
Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 2007; 104: 18654–18659.
Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 2010; 16: 21–33.
Hinoue T, Weisenberger DJ, Lange CPE, Shen H, Byun H-M, Van Den Berg D et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012; 22: 271–282.
Yagi K, Takahashi H, Akagi K, Matsusaka K, Seto Y, Aburatani H et al. Intermediate methylation epigenotype and its correlation to KRAS mutation in conventional colorectal adenoma. Am J Pathol 2012; 180: 616–625.
Campbell JD, Mazzilli SA, Reid ME, Dhillon SS, Platero S, Beane J et al. The case for a pre-cancer genome atlas (PCGA). Cancer Prev Res 2016; 9: 119–124.
Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A . Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 2011; 6: 468–481.
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.
Zimmerman SG, Thorpe LM, Medrano VR, Mallozzi CA, McCartney BM . Apical constriction and invagination downstream of the canonical Wnt signaling pathway requires Rho1 and Myosin II. Dev Biol 2010; 340: 54–66.
Pabst O, Zweigerdt R, Arnold HH . Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 1999; 126: 2215–2225.
VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2012; 139: 488–497.
Hill ME, Asa SL, Drucker DJ . Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol 1999; 13: 1474–1486.
Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 2006; 133: 833–843.
Karlsson L, Lindahl P, Heath JK, Betsholtz C . Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127: 3457–3466.
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.
Margueron R, Reinberg D . The polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.
Enroth S, Rada-Iglesisas A, Andersson R, Wallerman O, Wanders A, Påhlman L et al. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa. BMC Cancer 2011; 11: 450.
Bhatlekar S, Fields JZ, Boman BM . HOX genes and their role in the development of human cancers. J Mol Med 2014; 92: 811–823.
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.
Fluge Ø, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S et al. Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer 2009; 101: 1282–1289.
Sarabi MM, Naghibalhossaini F . Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem Funct 2015; 33: 427–433.
Beggs AD, Jones A, El-Bahrawy M, El-Bahwary M, Abulafi M, Hodgson SV et al. Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 2013; 229: 697–704.
Bariol C, Suter C, Cheong K, Ku S-L, Meagher A, Hawkins N et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 2003; 162: 1361–1371.
Rosenberg DW, Yang S, Pleau DC, Greenspan EJ, Stevens RG, Rajan TV et al. Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res 2007; 67: 3551–3554.
Benoit YD, Lepage MB, Khalfaoui T, Tremblay E, Basora N, Carrier JC et al. Polycomb repressive complex 2 impedes intestinal cell terminal differentiation. J Cell Sci 2012; 125: 3454–3463.
Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 2007; 104: 5527–5532.
Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39: 157–158.
Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.
Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39: 232–236.
Rada-Iglesias A, Enroth S, Andersson R, Wanders A, Påhlman L, Komorowski J et al. Histone H3 lysine 27 trimethylation in adult differentiated colon associated to cancer DNA hypermethylation. Epigenetics 2009; 4: 107–113.
Hahn MA, Li AX, Wu X, Yang R, Drew DA, Rosenberg DW et al. Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res 2014; 74: 3617–3629.
Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D . The dynamic architecture of Hox gene clusters. Science 2011; 334: 222–225.
Haberland M, Mokalled MH, Montgomery RL, Olson EN . Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 2009; 23: 1625–1630.
Freschi G, Taddei A, Bechi P, Faiella A, Gulisano M, Cillo C et al. Expression of HOX homeobox genes in the adult human colonic mucosa (and colorectal cancer?). Int J Mol Med 2005; 16: 581–587.
Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer 2008; 7: 94.
Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP . Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 2009; 11: R14.
Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.
Ashida R, Tominaga K, Sasaki E, Watanabe T, Fujiwara Y, Oshitani N et al. AP-1 and colorectal cancer. Inflammopharmacology 2005; 13: 113–125.
Kong HK, Yoon S, Park JH . The regulatory mechanism of the LY6K gene expression in human breast cancer cells. J Biol Chem 2012; 287: 38889–38900.
Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 2012; 44: 40–46.
Drew DA, Devers TJ, O’Brien MJ, Horelik NA, Levine J, Rosenberg DW . HD chromoendoscopy coupled with DNA mass spectrometry profiling identifies somatic mutations in microdissected human proximal aberrant crypt foci. Mol Cancer Res 2014; 12: 823–829.
Hahn MA, Li AX, Wu X, Pfeifer GP . Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by RRBS and TAB-RRBS. Methods Mol Biol 2015; 1238: 273–287.
Xiong Z, Laird PW . COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25: 2532–2534.
Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.
Acknowledgements
This work was supported by NIH grant CA159976 to DWR, and NIH grants CA084469 and CA160965 to GPP.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on the Oncogene website
Supplementary information
Rights and permissions
About this article
Cite this article
Hanley, M., Hahn, M., Li, A. et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colonic neoplasia. Oncogene 36, 5035–5044 (2017). https://doi.org/10.1038/onc.2017.130
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/onc.2017.130
This article is cited by
-
A DNA methylation signature for the prediction of tumour recurrence in stage II colorectal cancer
British Journal of Cancer (2023)
-
Pan-cancer predictions of transcription factors mediating aberrant DNA methylation
Epigenetics & Chromatin (2022)
-
Epigenome-wide association study of whole blood gene expression in Framingham Heart Study participants provides molecular insight into the potential role of CHRNA5 in cigarette smoking-related lung diseases
Clinical Epigenetics (2021)
-
A CRISPR knockout screen reveals new regulators of canonical Wnt signaling
Oncogenesis (2021)
-
ZNF471 modulates EMT and functions as methylation regulated tumor suppressor with diagnostic and prognostic significance in cervical cancer
Cell Biology and Toxicology (2021)