Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide DNA methylation profiling reveals cancer-associated changes within early colonic neoplasia

Abstract

Colorectal cancer (CRC) is characterized by genome-wide alterations to DNA methylation that influence gene expression and genomic stability. Less is known about the extent to which methylation is disrupted in the earliest stages of CRC development. In this study, we have combined laser-capture microdissection with reduced representation bisulfite sequencing to identify cancer-associated DNA methylation changes in human aberrant crypt foci (ACF), the earliest putative precursor to CRC. Using this approach, methylation profiles have been generated for 10 KRAS-mutant ACF and 10 CRCs harboring a KRAS mutation, as well as matched samples of normal mucosa. Of 811 differentially methylated regions (DMRs) identified in ACF, 537 (66%) were hypermethylated and 274 (34%) were hypomethylated. DMRs located within intergenic regions were heavily enriched for AP-1 transcription factor binding sites and were frequently hypomethylated. Furthermore, gene ontology analysis demonstrated that DMRs associated with promoters were enriched for genes involved in intestinal development, including homeobox genes and targets of the Polycomb repressive complex 2. Consistent with their role in the earliest stages of colonic neoplasia, 75% of the loci harboring methylation changes in ACF were also altered in CRC samples, though the magnitude of change at these sites was lesser in ACF. Although aberrant promoter methylation was associated with altered gene expression in CRC, this was not the case in ACF, suggesting the insufficiency of methylation changes to modulate gene expression in early colonic neoplasia. Altogether, these data demonstrate that DNA methylation changes, including significant hypermethylation, occur more frequently in early colonic neoplasia than previously believed, and identify epigenomic features of ACF that may provide new targets for cancer chemoprevention or lead to the development of new biomarkers for CRC risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. American Cancer Society. Cancer Facts & Figures 2016. American Cancer Society: Atlanta, GA, USA, 2016.

  2. Jones PA, Baylin SB . The epigenomics of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ehrlich M . DNA hypomethylation in cancer cells. Epigenomics 2009; 1: 239–259.

    Article  CAS  PubMed  Google Scholar 

  4. Eden A, Gaudet F, Waghmare A, Jaenisch R . Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003; 300: 455.

    Article  CAS  PubMed  Google Scholar 

  5. Esteller M . CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 2002; 21: 5427–5440.

    Article  CAS  PubMed  Google Scholar 

  6. Sakai E, Nakajima A, Kaneda A . Accumulation of aberrant DNA methylation during colorectal cancer development. World J Gastroenterol 2014; 20: 978–987.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kawakami K, Ruszkiewicz A, Bennett G, Moore J, Grieu F, Watanabe G et al. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer 2006; 94: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Silviera ML, Smith BP, Powell J, Sapienza C . Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways. Cancer Prev Res 2012; 5: 374–384.

    Article  CAS  Google Scholar 

  9. Chai H, Brown RE . Field effect in cancer-an update. Ann Clin Lab Sci 2009; 39: 331–337.

    CAS  PubMed  Google Scholar 

  10. Greenspan EJ, Jablonski MA, Rajan TV, Levine J, Belinsky GS, Rosenberg DW . Epigenetic alterations in RASSF1A in human aberrant crypt foci. Carcinogenesis 2006; 27: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  11. Chan AO-O, Broaddus RR, Houlihan PS, Issa J-PJ, Hamilton SR, Rashid A . CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol 2002; 160: 1823–1830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki H, Watkins DN, Jair K-W, Schuebel KE, Markowitz SD, Dong Chen W et al. Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 2004; 36: 417–422.

    Article  CAS  PubMed  Google Scholar 

  13. Inoue A, Okamoto K, Fujino Y, Nakagawa T, Muguruma N, Sannomiya K et al. B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P. Br J Cancer 2015; 112: 403–412.

    Article  CAS  PubMed  Google Scholar 

  14. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 787–793.

    Article  CAS  PubMed  Google Scholar 

  15. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA 2007; 104: 18654–18659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yagi K, Akagi K, Hayashi H, Nagae G, Tsuji S, Isagawa T et al. Three DNA methylation epigenotypes in human colorectal cancer. Clin Cancer Res 2010; 16: 21–33.

    Article  CAS  PubMed  Google Scholar 

  17. Hinoue T, Weisenberger DJ, Lange CPE, Shen H, Byun H-M, Van Den Berg D et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012; 22: 271–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yagi K, Takahashi H, Akagi K, Matsusaka K, Seto Y, Aburatani H et al. Intermediate methylation epigenotype and its correlation to KRAS mutation in conventional colorectal adenoma. Am J Pathol 2012; 180: 616–625.

    Article  CAS  PubMed  Google Scholar 

  19. Campbell JD, Mazzilli SA, Reid ME, Dhillon SS, Platero S, Beane J et al. The case for a pre-cancer genome atlas (PCGA). Cancer Prev Res 2016; 9: 119–124.

    Article  CAS  Google Scholar 

  20. Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, Meissner A . Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc 2011; 6: 468–481.

    Article  CAS  PubMed  Google Scholar 

  21. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zimmerman SG, Thorpe LM, Medrano VR, Mallozzi CA, McCartney BM . Apical constriction and invagination downstream of the canonical Wnt signaling pathway requires Rho1 and Myosin II. Dev Biol 2010; 340: 54–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pabst O, Zweigerdt R, Arnold HH . Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine and spleen. Development 1999; 126: 2215–2225.

    CAS  PubMed  Google Scholar 

  24. VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2012; 139: 488–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hill ME, Asa SL, Drucker DJ . Essential requirement for Pax6 in control of enteroendocrine proglucagon gene transcription. Mol Endocrinol 1999; 13: 1474–1486.

    Article  CAS  PubMed  Google Scholar 

  26. Ormestad M, Astorga J, Landgren H, Wang T, Johansson BR, Miura N et al. Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production. Development 2006; 133: 833–843.

    Article  CAS  PubMed  Google Scholar 

  27. Karlsson L, Lindahl P, Heath JK, Betsholtz C . Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development 2000; 127: 3457–3466.

    CAS  PubMed  Google Scholar 

  28. Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Margueron R, Reinberg D . The polycomb complex PRC2 and its mark in life. Nature 2011; 469: 343–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Enroth S, Rada-Iglesisas A, Andersson R, Wallerman O, Wanders A, PÃ¥hlman L et al. Cancer associated epigenetic transitions identified by genome-wide histone methylation binding profiles in human colorectal cancer samples and paired normal mucosa. BMC Cancer 2011; 11: 450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhatlekar S, Fields JZ, Boman BM . HOX genes and their role in the development of human cancers. J Mol Med 2014; 92: 811–823.

    Article  CAS  PubMed  Google Scholar 

  32. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fluge Ø, Gravdal K, Carlsen E, Vonen B, Kjellevold K, Refsum S et al. Expression of EZH2 and Ki-67 in colorectal cancer and associations with treatment response and prognosis. Br J Cancer 2009; 101: 1282–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sarabi MM, Naghibalhossaini F . Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem Funct 2015; 33: 427–433.

    Article  CAS  PubMed  Google Scholar 

  35. Beggs AD, Jones A, El-Bahrawy M, El-Bahwary M, Abulafi M, Hodgson SV et al. Whole-genome methylation analysis of benign and malignant colorectal tumours. J Pathol 2013; 229: 697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bariol C, Suter C, Cheong K, Ku S-L, Meagher A, Hawkins N et al. The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 2003; 162: 1361–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenberg DW, Yang S, Pleau DC, Greenspan EJ, Stevens RG, Rajan TV et al. Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans. Cancer Res 2007; 67: 3551–3554.

    Article  CAS  PubMed  Google Scholar 

  38. Benoit YD, Lepage MB, Khalfaoui T, Tremblay E, Basora N, Carrier JC et al. Polycomb repressive complex 2 impedes intestinal cell terminal differentiation. J Cell Sci 2012; 125: 3454–3463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rauch T, Wang Z, Zhang X, Zhong X, Wu X, Lau SK et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay. Proc Natl Acad Sci USA 2007; 104: 5527–5532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39: 157–158.

    Article  CAS  PubMed  Google Scholar 

  41. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE, Cope L et al. A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 2007; 39: 237–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M, Zimmerman J et al. Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 2007; 39: 232–236.

    Article  CAS  PubMed  Google Scholar 

  43. Rada-Iglesias A, Enroth S, Andersson R, Wanders A, Påhlman L, Komorowski J et al. Histone H3 lysine 27 trimethylation in adult differentiated colon associated to cancer DNA hypermethylation. Epigenetics 2009; 4: 107–113.

    Article  CAS  PubMed  Google Scholar 

  44. Hahn MA, Li AX, Wu X, Yang R, Drew DA, Rosenberg DW et al. Loss of the polycomb mark from bivalent promoters leads to activation of cancer-promoting genes in colorectal tumors. Cancer Res 2014; 74: 3617–3629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Noordermeer D, Leleu M, Splinter E, Rougemont J, De Laat W, Duboule D . The dynamic architecture of Hox gene clusters. Science 2011; 334: 222–225.

    Article  CAS  PubMed  Google Scholar 

  46. Haberland M, Mokalled MH, Montgomery RL, Olson EN . Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 2009; 23: 1625–1630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Freschi G, Taddei A, Bechi P, Faiella A, Gulisano M, Cillo C et al. Expression of HOX homeobox genes in the adult human colonic mucosa (and colorectal cancer?). Int J Mol Med 2005; 16: 581–587.

    CAS  PubMed  Google Scholar 

  48. Ahlquist T, Lind GE, Costa VL, Meling GI, Vatn M, Hoff GS et al. Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Mol Cancer 2008; 7: 94.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tommasi S, Karm DL, Wu X, Yen Y, Pfeifer GP . Methylation of homeobox genes is a frequent and early epigenetic event in breast cancer. Breast Cancer Res 2009; 11: R14.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shaulian E, Karin M . AP-1 as a regulator of cell life and death. Nat Cell Biol 2002; 4: E131–E136.

    Article  CAS  PubMed  Google Scholar 

  51. Ashida R, Tominaga K, Sasaki E, Watanabe T, Fujiwara Y, Oshitani N et al. AP-1 and colorectal cancer. Inflammopharmacology 2005; 13: 113–125.

    Article  CAS  PubMed  Google Scholar 

  52. Kong HK, Yoon S, Park JH . The regulatory mechanism of the LY6K gene expression in human breast cancer cells. J Biol Chem 2012; 287: 38889–38900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet 2012; 44: 40–46.

    Article  CAS  Google Scholar 

  54. Drew DA, Devers TJ, O’Brien MJ, Horelik NA, Levine J, Rosenberg DW . HD chromoendoscopy coupled with DNA mass spectrometry profiling identifies somatic mutations in microdissected human proximal aberrant crypt foci. Mol Cancer Res 2014; 12: 823–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hahn MA, Li AX, Wu X, Pfeifer GP . Single base resolution analysis of 5-methylcytosine and 5-hydroxymethylcytosine by RRBS and TAB-RRBS. Methods Mol Biol 2015; 1238: 273–287.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xiong Z, Laird PW . COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 1997; 25: 2532–2534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang DW, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant CA159976 to DWR, and NIH grants CA084469 and CA160965 to GPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D W Rosenberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanley, M., Hahn, M., Li, A. et al. Genome-wide DNA methylation profiling reveals cancer-associated changes within early colonic neoplasia. Oncogene 36, 5035–5044 (2017). https://doi.org/10.1038/onc.2017.130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.130

This article is cited by

Search

Quick links