Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α

Abstract

High aerobic glycolysis not only provides energy to cancer cells, but also supports their anabolic growth. JMJD1A, a histone demethylase that specifically demethylates H3K9me1/2, is overexpressed in multiple cancers, including urinary bladder cancer (UBC). It is unclear whether JMJD1A could promote cancer cell growth through enhancing glycolysis. In this study, we found that downregulation of JMJD1A decreased UBC cell proliferation, colony formation and xenograft tumor growth. Knockdown of JMJD1A inhibited glycolysis by decreasing the expression of genes participated in glucose metabolism, including GLUT1, HK2, PGK1, PGM, LDHA and MCT4. Mechanistically, JMJD1A cooperated with hypoxia inducible factor 1α (HIF1α), an important transcription factor for glucose metabolism, to induce the glycolytic gene expression. JMJD1A was recruited to the promoter of glycolytic gene PGK1 to demethylate H3K9me2. However, the JMJD1A (H1120Y) mutant, which loses the demethylase activity, failed to cooperate with HIF1α to induce the glycolytic gene expression, and failed to demethylate H3K9me2 on PGK1 promoter, suggesting that the demethylase activity of JMJD1A is essential for its coactivation function for HIF1α. Inhibition of glycolysis through knocking down HIF1α or PGK1 decelerated JMJD1A-enhanced UBC cell growth. Consistent with these results, a positive correlation between JMJD1A and several key glycolytic genes in human UBC samples was established by analyzing a microarray-based gene expression profile. In conclusion, our study demonstrates that JMJD1A promotes UBC progression by enhancing glycolysis through coactivation of HIF1α, implicating that JMJD1A is a potential molecular target for UBC treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66: 115–132.

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2016. CA Cancer J Clin 2016; 66: 7–30.

    Article  Google Scholar 

  3. Kobayashi T, Owczarek TB, McKiernan JM, Abate-Shen C . Modelling bladder cancer in mice: opportunities and challenges. Nat Rev Cancer 2015; 15: 42–54.

    Article  CAS  Google Scholar 

  4. Koppenol WH, Bounds PL, Dang CV . Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 2011; 11: 325–337.

    Article  CAS  Google Scholar 

  5. Keith B, Johnson RS, Simon MC . HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat Rev Cancer 2012; 12: 9–22.

    Article  CAS  Google Scholar 

  6. Denko NC . Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 2008; 8: 705–713.

    Article  CAS  Google Scholar 

  7. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125: 483–495.

    Article  CAS  Google Scholar 

  8. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y . Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007; 450: 119–123.

    Article  CAS  Google Scholar 

  9. Tateishi K, Okada Y, Kallin EM, Zhang Y . Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009; 458: 757–761.

    Article  CAS  Google Scholar 

  10. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene 2016; 35: 2441–2452.

    Article  CAS  Google Scholar 

  11. Loh YH, Zhang W, Chen X, George J, Ng HH . Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 2007; 21: 2545–2557.

    Article  CAS  Google Scholar 

  12. Ma DK, Chiang CH, Ponnusamy K, Ming GL, Song H . G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 2008; 26: 2131–2141.

    Article  CAS  Google Scholar 

  13. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 2013; 341: 1106–1109.

    Article  CAS  Google Scholar 

  14. Wade MA, Jones D, Wilson L, Stockley J, Coffey K, Robson CN et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res 2015; 43: 196–207.

    Article  CAS  Google Scholar 

  15. Suikki HE, Kujala PM, Tammela TL, van Weerden WM, Vessella RL, Visakorpi T . Genetic alterations and changes in expression of histone demethylases in prostate cancer. Prostate 2010; 70: 889–898.

    CAS  PubMed  Google Scholar 

  16. Yamada D, Kobayashi S, Yamamoto H, Tomimaru Y, Noda T, Uemura M et al. Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection. Ann Surg Oncol 2012; 19: S355–S364.

    Article  Google Scholar 

  17. Park SJ, Kim JG, Son TG, Yi JM, Kim ND, Yang K et al. The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia. Biochem Biophys Res Commun 2013; 434: 722–727.

    Article  CAS  Google Scholar 

  18. Lee HY, Yang EG, Park H . Hypoxia enhances the expression of prostate-specific antigen by modifying the quantity and catalytic activity of Jumonji C domain-containing histone demethylases. Carcinogenesis 2013; 34: 2706–2715.

    Article  CAS  Google Scholar 

  19. Cho HS, Toyokawa G, Daigo Y, Hayami S, Masuda K, Ikawa N et al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene. Int J Cancer 2012; 131: E179–E189.

    Article  CAS  Google Scholar 

  20. Beyer S, Kristensen MM, Jensen KS, Johansen JV, Staller P . The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF. J Biol Chem 2008; 283: 36542–36552.

    Article  CAS  Google Scholar 

  21. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ . Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 2010; 30: 344–353.

    Article  CAS  Google Scholar 

  22. Mimura I, Nangaku M, Kanki Y, Tsutsumi S, Inoue T, Kohro T et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia-inducible factor 1 and KDM3A. Mol Cell Biol 2012; 32: 3018–3032.

    Article  CAS  Google Scholar 

  23. Bayley JP, Devilee P . The Warburg effect in 2012. Curr Opin Oncol 2012; 24: 62–67.

    Article  CAS  Google Scholar 

  24. Vander Heiden MG, Cantley LC, Thompson CB . Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324: 1029–1033.

    Article  CAS  Google Scholar 

  25. Zhao W, Chang C, Cui Y, Zhao X, Yang J, Shen L et al. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1alpha. J Biol Chem 2014; 289: 11219–11229.

    Article  CAS  Google Scholar 

  26. Perez-Perri JI, Dengler VL, Audetat KA, Pandey A, Bonner EA, Urh M et al. The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Rep 2016; 16: 37–47.

    Article  CAS  Google Scholar 

  27. Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U et al. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res 2012; 40: 1928–1943.

    Article  CAS  Google Scholar 

  28. Luo W, Hu H, Chang R, Zhong J, Knabel M, O'Meally R et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011; 145: 732–744.

    Article  CAS  Google Scholar 

  29. Thamotharan S, Raychaudhuri N, Tomi M, Shin BC, Devaskar SU . Hypoxic adaptation engages the CBP/CREST-induced coactivator complex of Creb-HIF-1alpha in transactivating murine neuroblastic glucose transporter. Am J Physiol Endocrinol Metab 2013; 304: E583–E598.

    Article  CAS  Google Scholar 

  30. Pollard Patrick J, Loenarz C, Mole David R, McDonough Michael A, Gleadle Jonathan M, Schofield Christopher J et al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1α. Biochem J 2008; 416: 387–394.

    Article  CAS  Google Scholar 

  31. Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M et al. The KDM3A-KLF2-IRF4 axis maintains myeloma cell survival. Nat Commun 2016; 7: 10258.

    Article  CAS  Google Scholar 

  32. Liu Z, Zhou S, Liao L, Chen X, Meistrich M, Xu J . Jmjd1a demethylase-regulated histone modification is essential for cAMP-response element modulator-regulated gene expression and spermatogenesis. J Biol Chem 2010; 285: 2758–2770.

    Article  CAS  Google Scholar 

  33. Zhang CS, Liu Q, Li M, Lin SY, Peng Y, Wu D et al. RHOBTB3 promotes proteasomal degradation of HIFalpha through facilitating hydroxylation and suppresses the Warburg effect. Cell Res 2015; 25: 1025–1042.

    Article  CAS  Google Scholar 

  34. Tong Z, Li M, Wang W, Mo P, Yu L, Liu K et al. Steroid receptor coactivator 1 promotes human hepatocellular carcinoma progression by enhancing Wnt/beta-catenin signaling. J Biol Chem 2015; 290: 18596–18608.

    Article  CAS  Google Scholar 

  35. Xu Y, Chen Q, Li W, Su X, Chen T, Liu Y et al. Overexpression of transcriptional coactivator AIB1 promotes hepatocellular carcinoma progression by enhancing cell proliferation and invasiveness. Oncogene 2010; 29: 3386–3397.

    Article  CAS  Google Scholar 

  36. Mo P, Zhou Q, Guan L, Wang Y, Wang W, Miao M et al. Amplified in breast cancer 1 promotes colorectal cancer progression through enhancing notch signaling. Oncogene 2015; 34: 3935–3945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from National Basic Research Program of China (973 Program, No. 2015CB553800 to CY), the National Natural Science Foundation of China (No. 81372176 to CY, No. U1405225 to CY; No. 81372168 to JY; No. 81470116 to BS), Shanghai Natural Science Foundation (14ZR1433200 to BS) and Wu Jie Ping Medical Foundation (320.6750.16051 to BS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, W., Peng, K., Li, M. et al. Histone demethylase JMJD1A promotes urinary bladder cancer progression by enhancing glycolysis through coactivation of hypoxia inducible factor 1α. Oncogene 36, 3868–3877 (2017). https://doi.org/10.1038/onc.2017.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.13

This article is cited by

Search

Quick links