Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Suppression of planar cell polarity signaling and migration in glioblastoma by Nrdp1-mediated Dvl polyubiquitination

Abstract

The lethality of the aggressive brain tumor glioblastoma multiforme (GBM) results in part from its strong propensity to invade surrounding normal brain tissue. Although oncogenic drivers such as epidermal growth factor receptor activation and Phosphatase and Tensin homolog inactivation are thought to promote the motility and invasiveness of GBM cells via phosphatidylinostitol 3-kinase activation, other unexplored mechanisms may also contribute to malignancy. Here we demonstrate that several components of the planar cell polarity (PCP) arm of non-canonical Wnt signaling including VANGL1, VANGL2 and FZD7 are transcriptionally upregulated in glioma and correlate with poorer patient outcome. Knockdown of the core PCP pathway component VANGL1 suppresses the motility of GBM cell lines, pointing to an important mechanistic role for this pathway in glioblastoma malignancy. We further observe that restoration of Nrdp1, a RING finger type E3 ubiquitin ligase whose suppression in GBM also correlates with poor prognosis, reduces GBM cell migration and invasiveness by suppressing PCP signaling. Our observations indicate that Nrdp1 physically interacts with the Vangl1 and Vangl2 proteins to mediate the K63-linked polyubiquitination of the Dishevelled, Egl-10 and Pleckstrin (DEP) domain of the Wnt pathway protein Dishevelled (Dvl). Ubiquitination hinders Dvl binding to phosphatidic acid, an interaction necessary for efficient Dvl recruitment to the plasma membrane upon Wnt stimulation of Fzd receptor and for the propagation of downstream signals. We conclude that the PCP pathway contributes significantly to the motility and hence the invasiveness of GBM cells, and that Nrdp1 acts as a negative regulator of PCP signaling by inhibiting Dvl through a novel polyubiquitination mechanism. We propose that the upregulation of core PCP components, together with the loss of the key negative regulator Nrdp1, act coordinately to promote GBM invasiveness and malignancy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 2013; 15 (Suppl 2): ii1–56.

    Article  Google Scholar 

  2. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014; 23: 1985–1996.

    Article  CAS  Google Scholar 

  3. Huang Z, Cheng L, Guryanova OA, Wu Q, Bao S . Cancer stem cells in glioblastoma—molecular signaling and therapeutic targeting. Protein Cell 2010; 1: 638–655.

    Article  CAS  Google Scholar 

  4. Eke I, Storch K, Kastner I, Vehlow A, Faethe C, Mueller-Klieser W et al. Three-dimensional invasion of human glioblastoma cells remains unchanged by X-ray and carbon ion irradiation in vitro. Int J Radiat Oncol Biol Phys 2012; 84: e515–e523.

    Article  Google Scholar 

  5. Huse JT, Holland E, DeAngelis LM . Glioblastoma: molecular analysis and clinical implications. Annu Rev Med 2013; 64: 59–70.

    Article  CAS  Google Scholar 

  6. Luk SK, Piekorz RP, Nurnberg B, Tony To SS . The catalytic phosphoinositol 3-kinase isoform p110delta is required for glioma cell migration and invasion. Eur J Cancer 2012; 48: 149–157.

    Article  CAS  Google Scholar 

  7. Paw I, Carpenter RC, Watabe K, Debinski W, Lo HW . Mechanisms regulating glioma invasion. Cancer Lett 2015; 362: 1–7.

    Article  CAS  Google Scholar 

  8. Anastas JN, Moon RT . WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13: 11–26.

    Article  CAS  Google Scholar 

  9. Montcouquiol M, Sans N, Huss D, Kach J, Dickman JD, Forge A et al. Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals. J Neurosci 2006; 26: 5265–5275.

    Article  CAS  Google Scholar 

  10. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 2012; 151: 1542–1556.

    Article  CAS  Google Scholar 

  11. Anastas JN, Biechele TL, Robitaille M, Muster J, Allison KH, Angers S et al. A protein complex of SCRIB, NOS1AP and VANGL1 regulates cell polarity and migration, and is associated with breast cancer progression. Oncogene 2012; 31: 3696–3708.

    Article  CAS  Google Scholar 

  12. Lee KH, Ahn EJ, Oh SJ, Kim O, Joo YE, Bae JA et al. KITENIN promotes glioma invasiveness and progression, associated with the induction of EMT and stemness markers. Oncotarget 2015; 6: 3240–3253.

    PubMed  Google Scholar 

  13. Hatakeyama J, Wald JH, Printsev I, Ho HY, Carraway KL 3rd . Vangl1 and Vangl2: planar cell polarity components with a developing role in cancer. Endocr Relat Cancer 2014; 21: R345–R356.

    Article  CAS  Google Scholar 

  14. Qiu XB, Markant SL, Yuan J, Goldberg AL . Nrdp1-mediated degradation of the gigantic IAP, BRUCE, is a novel pathway for triggering apoptosis. EMBO J 2004; 23: 800–810.

    Article  CAS  Google Scholar 

  15. Diamonti AJ, Guy PM, Ivanof C, Wong K, Sweeney C, Carraway KL 3rd . An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc Natl Acad Sci USA 2002; 99: 2866–2871.

    Article  CAS  Google Scholar 

  16. Yen L, Cao Z, Wu X, Ingalla ER, Baron C, Young LJ et al. Loss of Nrdp1 enhances ErbB2/ErbB3-dependent breast tumor cell growth. Cancer Res 2006; 66: 11279–11286.

    Article  CAS  Google Scholar 

  17. Ingalla EQ, Miller JK, Wald JH, Workman HC, Kaur RP, Yen L et al. Post-transcriptional mechanisms contribute to the suppression of the ErbB3 negative regulator protein Nrdp1 in mammary tumors. J Biol Chem 2010; 285: 28691–28697.

    Article  CAS  Google Scholar 

  18. Chen L, Siddiqui S, Bose S, Mooso B, Asuncion A, Bedolla RG et al. Nrdp1-mediated regulation of ErbB3 expression by the androgen receptor in androgen-dependent but not castrate-resistant prostate cancer cells. Cancer Res 2010; 70: 5994–6003.

    Article  CAS  Google Scholar 

  19. Jiang Y, Sun S, Liu G, Yan B, Niu J . Nrdp1 inhibits metastasis of colorectal cancer cells by EGFR signaling-dependent MMP7 modulation. Tumour Biol 2015; 36: 1129–1133.

    Article  CAS  Google Scholar 

  20. Shi H, Du J, Wang L, Zheng B, Gong H, Wu Y et al. Lower expression of Nrdp1 in human glioma contributes tumor progression by reducing apoptosis. IUBMB Life 2014; 66: 704–710.

    Article  CAS  Google Scholar 

  21. Shi H, Gong H, Cao K, Zou S, Zhu B, Bao H et al. Nrdp1-mediated ErbB3 degradation inhibits glioma cell migration and invasion by reducing cytoplasmic localization of p27(Kip1). J Neurooncol 2015; 124: 357–364.

    Article  CAS  Google Scholar 

  22. Andersson U, Guo D, Malmer B, Bergenheim AT, Brannstrom T, Hedman H et al. Epidermal growth factor receptor family (EGFR, ErbB2-4) in gliomas and meningiomas. Acta Neuropathol 2004; 108: 135–142.

    Article  CAS  Google Scholar 

  23. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17: 98–110.

    Article  CAS  Google Scholar 

  24. Gao C, Chen YG . Dishevelled: the hub of Wnt signaling. Cell Signal 2010; 22: 717–727.

    Article  CAS  Google Scholar 

  25. Trinh J . Regulation of vertebrate planar cell polarity. A thesis submitted in conformity with the requirements for the degree of Master of Science. Graduate Department of Molecular Genetics, University of Toronto 2009; https://tspace.library.utoronto.ca/bitstream/1807/18966/6/Trinh_Jason_200911_MSc_thesis.pdf.

  26. Torban E, Patenaude AM, Leclerc S, Rakowiecki S, Gauthier S, Andelfinger G et al. Genetic interaction between members of the Vangl family causes neural tube defects in mice. Proc Natl Acad Sci USA 2008; 105: 3449–3454.

    Article  CAS  Google Scholar 

  27. Gao B, Song H, Bishop K, Elliot G, Garrett L, English MA et al. Wnt signaling gradients establish planar cell polarity by inducing Vangl2 phosphorylation through Ror2. Dev Cell 2011; 20: 163–176.

    Article  CAS  Google Scholar 

  28. Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P . Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 2001; 10: 2593–2601.

    Article  CAS  Google Scholar 

  29. Printsev I, Yen L, Sweeney C, Carraway KL 3rd . Oligomerization of the Nrdp1 E3 ubiquitin ligase is necessary for efficient autoubiquitination but not ErbB3 ubiquitination. J Biol Chem 2014; 289: 8570–8578.

    Article  CAS  Google Scholar 

  30. Peng Y, Axelrod JD . Asymmetric protein localization in planar cell polarity: mechanisms, puzzles, and challenges. Curr Top Dev Biol 2012; 101: 33–53.

    Article  CAS  Google Scholar 

  31. Torban E, Iliescu A, Gros P . An expanding role of Vangl proteins in embryonic development. Curr Top Dev Biol 2012; 101: 237–261.

    Article  CAS  Google Scholar 

  32. Tauriello DV, Maurice MM . The various roles of ubiquitin in Wnt pathway regulation. Cell Cycle 2010; 9: 3700–3709.

    Article  CAS  Google Scholar 

  33. Wu X, Yen L, Irwin L, Sweeney C, Carraway KL 3rd . Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol Cell Biol 2004; 24: 7748–7757.

    Article  CAS  Google Scholar 

  34. Haglund K, Dikic I . Ubiquitylation and cell signaling. EMBO J 2005; 24: 3353–3359.

    Article  CAS  Google Scholar 

  35. Simons M, Gault WJ, Gotthardt D, Rohatgi R, Klein TJ, Shao Y et al. Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nat Cell Biol 2009; 11: 286–294.

    Article  CAS  Google Scholar 

  36. Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM . Wnt proteins induce dishevelled phosphorylation via an LRP5/6- independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 2004; 24: 4757–4768.

    Article  CAS  Google Scholar 

  37. Kamino M, Kishida M, Kibe T, Ikoma K, Iijima M, Hirano H et al. Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMP-2. Cancer Sci 2011; 102: 540–548.

    Article  CAS  Google Scholar 

  38. Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol 2000; 7: 1178–1184.

    Article  CAS  Google Scholar 

  39. Tauriello DV, Jordens I, Kirchner K, Slootstra JW, Kruitwagen T, Bouwman BA et al. Wnt/beta-catenin signaling requires interaction of the Dishevelled DEP domain and C terminus with a discontinuous motif in Frizzled. Proc Natl Acad Sci USA 2012; 109: E812–E820.

    Article  CAS  Google Scholar 

  40. de Groot RE, Ganji RS, Bernatik O, Lloyd-Lewis B, Seipel K, Sedova K et al. Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway. Sci Signal 2014; 7: ra26.

    Article  Google Scholar 

  41. Sewduth RN, Jaspard-Vinassa B, Peghaire C, Guillabert A, Franzl N, Larrieu-Lahargue F et al. The ubiquitin ligase PDZRN3 is required for vascular morphogenesis through Wnt/planar cell polarity signalling. Nat Commun 2014; 5: 4832.

    Article  CAS  Google Scholar 

  42. Lewandowski KT, Piwnica-Worms H . Phosphorylation of the E3 ubiquitin ligase RNF41 by the kinase Par-1b is required for epithelial cell polarity. J Cell Sci 2014; 127: 315–327.

    Article  CAS  Google Scholar 

  43. Courbard JR, Djiane A, Wu J, Mlodzik M . The apical/basal-polarity determinant Scribble cooperates with the PCP core factor Stbm/Vang and functions as one of its effectors. Dev Biol 2009; 333: 67–77.

    Article  CAS  Google Scholar 

  44. Cao Z, Wu X, Yen L, Sweeney C, Carraway KL 3rd . Neuregulin-induced ErbB3 downregulation is mediated by a protein stability cascade involving the E3 ubiquitin ligase Nrdp1. Mol Cell Biol 2007; 27: 2180–2188.

    Article  CAS  Google Scholar 

  45. Funato Y, Terabayashi T, Sakamoto R, Okuzaki D, Ichise H, Nojima H et al. Nucleoredoxin sustains Wnt/beta-catenin signaling by retaining a pool of inactive dishevelled protein. Curr Biol 2010; 20: 1945–1952.

    Article  CAS  Google Scholar 

  46. Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR et al. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell 2010; 37: 607–619.

    Article  CAS  Google Scholar 

  47. Fry WH, Simion C, Sweeney C, Carraway KL 3rd . Quantity control of the ErbB3 receptor tyrosine kinase at the endoplasmic reticulum. Mol Cell Biol 2011; 31: 3009–3018.

    Article  CAS  Google Scholar 

  48. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 2006; 9: 287–300.

    Article  CAS  Google Scholar 

  49. Pellegrin S, Mellor H . Rho GTPase activation assays. Curr Protoc Cell Biol 2008; 38: 14.8.1–14.8.19.

    Article  Google Scholar 

Download references

Acknowledgements

These studies were supported by NIH grants CA123541 (KLC), CA166412 (KLC) and CA118384 (CS), NIH fellowships CA165758 (JH) and CA165546 (IP), DoD BCRP fellowship W81XWH-10-1-0069 (JHW), and NCI P30CA093373 (Cancer Center Support Grant-FACS core). We thank Drs Paul Knoepfler, Madelon Maurice and Hiroaki Miki for kindly providing reagents and cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K L Carraway 3rd.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wald, J., Hatakeyama, J., Printsev, I. et al. Suppression of planar cell polarity signaling and migration in glioblastoma by Nrdp1-mediated Dvl polyubiquitination. Oncogene 36, 5158–5167 (2017). https://doi.org/10.1038/onc.2017.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.126

This article is cited by

Search

Quick links