Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer

Abstract

Therapeutic strategies against KRAS mutant colorectal cancers are developed using cell line models, which do not accurately represent the transcriptome driven by oncogenic KRAS in tumors. We sought to identify a KRAS-associated gene signature from colorectal tumors to develop a precise treatment strategy. Integrative analysis of quantitative KRAS mutation detection and matched gene expression profiling in 55 CRC bulk tumors was carried out to define a gene signature enriched in CRC tumors with high KRAS mutation. The KRAS-associated gene signature identified exhibits functional enrichment in cell cycle and mitosis processes, and includes mitotic transcription factor, FOXM1. Combination treatment of CDK4/6 inhibitor Palbociclib and MEK inhibitor PD0325901 was tested in KRAS-mutant, BRAF-mutant CRC, normal colon epithelial lines and xenografts models to determine their efficacy and toxicity and to monitor the changes in the gene signature. Inhibiting CDK4/6, an upstream regulator of FOXM1, and MEK synergistically depleted FOXM1 and KRAS-associated gene signature, suggesting that CDK4/6 and MEK regulate the KRAS gene signature. The combined inhibition of CDK4/6 and MEK elicited a robust therapeutic response in KRAS-dependent and BRAF-mutant CRC, both in vitro and in vivo and this correlated with downregulation of the KRAS-associated gene signature. Our preclinical study demonstrated the efficacy of Palbociclib and PD0325901 combinatorial treatment selectively in KRAS-dependent and BRAF-mutant CRC but not in normal colon epithelial cells. The KRAS-associated gene signature could facilitate the identification of responsive metastatic CRC to this therapeutic strategy in clinical settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Prior IA, Lewis PD, Mattos C . A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72: 2457–2467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Russo A, Bazan V, Agnese V, Rodolico V, Gebbia N . Prognostic and predictive factors in colorectal cancer: Kirsten Ras in CRC (RASCAL) and TP53CRC collaborative studies. Ann Oncol 2005; 16 (Suppl 4): iv44–iv49.

    Article  PubMed  Google Scholar 

  3. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009; 360: 1408–1417.

    Article  CAS  PubMed  Google Scholar 

  4. Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 2012; 486: 532–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mendoza MC, Er EE, Blenis J . The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011; 36: 320–328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ et al. KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 2009; 8: 834–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 2009; 137: 821–834.

    Article  CAS  PubMed  Google Scholar 

  8. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 2009; 137: 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kosmidou V, Oikonomou E, Vlassi M, Avlonitis S, Katseli A, Tsipras I et al. Tumor heterogeneity revealed by KRAS, BRAF, and PIK3CA pyrosequencing: KRAS and PIK3CA intratumor mutation profile differences and their therapeutic implications. Hum Mutat 2014; 35: 329–340.

    Article  CAS  PubMed  Google Scholar 

  10. Ciardiello F, Normanno N, Maiello E, Martinelli E, Troiani T, Pisconti S et al. Clinical activity of FOLFIRI plus cetuximab according to extended gene mutation status by next-generation sequencing: findings from the CAPRI-GOIM trial. Ann Oncol 2014; 25: 1756–1761.

    Article  CAS  PubMed  Google Scholar 

  11. Laoukili J, Kooistra MR, Bras A, Kauw J, Kerkhoven RM, Morrison A et al. FoxM1 is required for execution of the mitotic programme and chromosome stability. Nat Cell Biol 2005; 7: 126–136.

    Article  CAS  PubMed  Google Scholar 

  12. Fu Z, Malureanu L, Huang J, Wang W, Li H, van Deursen JM et al. Plk1-dependent phosphorylation of FoxM1 regulates a transcriptional programme required for mitotic progression. Nat Cell Biol 2008; 10: 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  PubMed  Google Scholar 

  14. Choi YJ, Anders L . Signaling through cyclin D-dependent kinases. Oncogene 2014; 33: 1890–1903.

    Article  CAS  PubMed  Google Scholar 

  15. Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 2011; 20: 620–634.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Harbour JW, Dean DC . The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev 2000; 14: 2393–2409.

    Article  CAS  PubMed  Google Scholar 

  17. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  19. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 2015; 47: 320–329.

    Article  CAS  PubMed  Google Scholar 

  20. McMurray HR, Sampson ER, Compitello G, Kinsey C, Newman L, Smith B et al. Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype. Nature 2008; 453: 1112–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT et al. The E2F1-3 transcription factors are essential for cellular proliferation. Nature 2001; 414: 457–462.

    Article  CAS  PubMed  Google Scholar 

  22. Berndt N, Hamilton AD, Sebti SM . Targeting protein prenylation for cancer therapy. Nat Rev Cancer 2011; 11: 775–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T et al. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010; 18: 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ebi H, Corcoran RB, Singh A, Chen Z, Song Y, Lifshits E et al. Receptor tyrosine kinases exert dominant control over PI3K signaling in human KRAS mutant colorectal cancers. J Clin Invest 2011; 121: 4311–4321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corcoran RB, Cheng KA, Hata AN, Faber AC, Ebi H, Coffee EM et al. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell 2013; 23: 121–128.

    Article  CAS  PubMed  Google Scholar 

  26. Ziemke EK, Dosch JS, Maust JD, Shettigar A, Sen A, Welling TH et al. Sensitivity of KRAS Mutant Colorectal Cancers to Combination Therapy that Co-Targets MEK and CDK4/6. Clin Cancer Res 2016; 22: 405–414.

    Article  CAS  PubMed  Google Scholar 

  27. Pilarsky C, Wenzig M, Specht T, Saeger HD, Grutzmann R . Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia 2004; 6: 744–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Putzer BM, Engelmann D . E2F1 apoptosis counterattacked: evil strikes back. Trends Mol Med 2013; 19: 89–98.

    Article  PubMed  Google Scholar 

  30. Kwong LN, Costello JC, Liu H, Jiang S, Helms TL, Langsdorf AE et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 2012; 18: 1503–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu X, Jakubowski M, Hunt JL . KRAS gene mutation in colorectal cancer is correlated with increased proliferation and spontaneous apoptosis. Am J Clin Pathol 2011; 135: 245–252.

    Article  CAS  PubMed  Google Scholar 

  32. Bryant KL, Mancias JD, Kimmelman AC, Der CJ . KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci 2014; 39: 91–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zona S, Bella L, Burton MJ, Nestal de Moraes G, Lam EW . FOXM1: an emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta 2014; 1839: 1316–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan Y, Chen Y, Yu L, Zhu H, Meng X, Huang X et al. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription. Cell Prolif 2010; 43: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gilad O, Nabet BY, Ragland RL, Schoppy DW, Smith KD, Durham AC et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res 2010; 70: 9693–9702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bertoli C, Herlihy AE, Pennycook BR, Kriston-Vizi J, de Bruin RA . Sustained E2F-Dependent Transcription Is a Key Mechanism to Prevent Replication-Stress-Induced DNA Damage. Cell Rep 2016; 15: 1412–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hayes TK, Neel NF, Hu C, Gautam P, Chenard M, Long B et al. Long-Term ERK Inhibition in KRAS-Mutant Pancreatic Cancer Is Associated with MYC Degradation and Senescence-like Growth Suppression. Cancer Cell 2016; 29: 75–89.

    Article  CAS  PubMed  Google Scholar 

  38. Katz M, Amit I, Yarden Y . Regulation of MAPKs by growth factors and receptor tyrosine kinases. Biochim Biophys Acta 2007; 1773: 1161–1176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al. A gene expression signature associated with 'K-Ras addiction' reveals regulators of EMT and tumor cell survival. Cancer Cell 2009; 15: 489–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM . K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503: 548–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ . Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov 2014; 13: 828–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang X, Tan J, Li J, Kivimae S, Yang X, Zhuang L et al. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 2008; 13: 529–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 2007; 21: 1050–1063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the A*STAR of Singapore, International S&T Cooperation Program of China (ISTCP) (No. 2013DFG32990) and National High Technology Research and Development Program (863) of China (No. 2012AA02A520). We thank Puay Leng Lee for technical assistance in western blot analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Yu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pek, M., Yatim, S., Chen, Y. et al. Oncogenic KRAS-associated gene signature defines co-targeting of CDK4/6 and MEK as a viable therapeutic strategy in colorectal cancer. Oncogene 36, 4975–4986 (2017). https://doi.org/10.1038/onc.2017.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.120

This article is cited by

Search

Quick links