Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differing tumor-suppressor functions of Arf and p53 in murine basal cell carcinoma initiation and progression

Abstract

Human basal cell carcinomas (BCCs) very frequently carry p53 mutations, and p53 loss markedly accelerates murine BCC carcinogenesis. We report here our studies of the mechanism by which p53 is activated to suppress BCC carcinogenesis. We find that aberrant hedgehog signaling in microscopic BCCs activates p53 in part via Arf (that is, the oncogene-induced stress pathway) but not via the DNA damage response pathway. However, Arf loss and p53 loss produce differing outcomes—loss of p53 promotes both tumor initiation and progression; loss of Arf promotes tumor progression but not initiation. Intriguingly, increased expression of Arf in tumor stromal cells, as in tumor keratinocytes themselves, contributes to suppression of BCC carcinogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Epstein EH . Basal cell carcinomas: attack of the hedgehog. Nat Rev Cancer 2008; 8: 743–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hutchin ME, Kariapper MS, Grachtchouk M, Wang A, Wei L, Cummings D et al. Sustained hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 2005; 19: 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aszterbaum M, Epstein J, Oro A, Douglas V, LeBoit PE, Scott MP et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999; 5: 1285–1291.

    Article  CAS  PubMed  Google Scholar 

  4. Mancuso M, Pazzaglia S, Tanori M, Hahn H, Merola P, Rebessi S et al. Basal cell carcinoma and its development: insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res 2004; 64: 934–941.

    Article  CAS  PubMed  Google Scholar 

  5. Jonason AS, Kunala S, Price GJ, Restifo RJ, Spinelli HM, Persing JA et al. Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci USA 1996; 93: 14025–14029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reifenberger J, Wolter M, Knobbe CB, Kohler B, Schonicke A, Scharwachter C et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005; 152: 43–51.

    Article  CAS  PubMed  Google Scholar 

  7. Lacour JP . Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 2002; 146: 17–19.

    Article  CAS  PubMed  Google Scholar 

  8. Wang GY, Wang J, Mancianti ML, Epstein EH Jr . Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/-) mice. Cancer Cell 2011; 19: 114–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sherr CJ, Weber JD . The ARF/p53 pathway. Curr Opin Genet Dev 2000; 10: 94–99.

    Article  CAS  PubMed  Google Scholar 

  10. Sherr CJ . Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6: 663–673.

    Article  CAS  PubMed  Google Scholar 

  11. Chen D, Kon N, Zhong J, Zhang P, Yu L, Gu W . Differential effects on ARF stability by normal versus oncogenic levels of c-Myc expression. Mol Cell 2013; 51: 46–56.

    Article  PubMed  Google Scholar 

  12. Young NP, Crowley D, Jacks T . Uncoupling cancer mutations reveals critical timing of p53 loss in sarcomagenesis. Cancer Res 2011; 71: 4040–4047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Zhang Z, Kastens E, Lubet RA, You M . Mice with alterations in both p53 and Ink4a/Arf display a striking increase in lung tumor multiplicity and progression: differential chemopreventive effect of budesonide in wild-type and mutant A/J mice. Cancer Res 2003; 63: 4389–4395.

    CAS  PubMed  Google Scholar 

  14. Busch SE, Moser RD, Gurley KE, Kelly-Spratt KS, Liggitt HD, Kemp CJ . ARF inhibits the growth and malignant progression of non-small-cell lung carcinoma. Oncogene 2014; 33: 2665–2673.

    Article  CAS  PubMed  Google Scholar 

  15. Wetmore C, Eberhart DE, Curran T . Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001; 61: 513–516.

    CAS  PubMed  Google Scholar 

  16. Carbonneau CL, Despars G, Rojas-Sutterlin S, Fortin A, Le O, Hoang T et al. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis. Blood 2012; 119: 717–726.

    Article  CAS  PubMed  Google Scholar 

  17. Nitzki F, Zibat A, Konig S, Wijgerde M, Rosenberger A, Brembeck FH et al. Tumor stroma-derived Wnt5a induces differentiation of basal cell carcinoma of Ptch-mutant mice via CaMKII. Cancer Res 2010; 70: 2739–2748.

    Article  CAS  PubMed  Google Scholar 

  18. Zibat A, Uhmann A, Nitzki F, Wijgerde M, Frommhold A, Heller T et al. Time-point and dosage of gene inactivation determine the tumor spectrum in conditional Ptch knockouts. Carcinogenesis 2009; 30: 918–926.

    Article  CAS  PubMed  Google Scholar 

  19. Qian H, Wang T, Naumovski L, Lopez CD, Brachmann RK . Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene 2002; 21: 7901–7911.

    Article  CAS  PubMed  Google Scholar 

  20. Brady CA, Jiang D, Mello SS, Johnson TM, Jarvis LA, Kozak MM et al. Distinct p53 transcriptional programs dictate acute DNA-damage responses and tumor suppression. Cell 2011; 145: 571–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ismail F, Ikram M, Purdie K, Harwood C, Leigh I, Storey A . Cutaneous squamous cell carcinoma (SCC) and the DNA damage response: pATM expression patterns in pre-malignant and malignant keratinocyte skin lesions. PLoS One 2011; 6: e21271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barlow C, Ribaut-Barassin C, Zwingman TA, Pope AJ, Brown KD, Owens JW et al. ATM is a cytoplasmic protein in mouse brain required to prevent lysosomal accumulation. Proc Natl Acad Sci USA 2000; 97: 871–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watters D, Kedar P, Spring K, Bjorkman J, Chen P, Gatei M et al. Localization of a portion of extranuclear ATM to peroxisomes. J Biol Chem 1999; 274: 34277–34282.

    Article  CAS  PubMed  Google Scholar 

  24. Zindy F, Williams RT, Baudino TA, Rehg JE, Skapek SX, Cleveland JL et al. Arf tumor suppressor promoter monitors latent oncogenic signals in vivo. Proc Natl Acad Sci USA 2003; 100: 15930–15935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lewis JG, Adams DO . Early inflammatory changes in the skin of SENCAR and C57BL/6 mice following exposure to 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 1987; 8: 889–898.

    Article  CAS  PubMed  Google Scholar 

  26. Kamijo T, Bodner S, van de Kamp E, Randle DH, Sherr CJ . Tumor spectrum in ARF-deficient mice. Cancer Res 1999; 59: 2217–2222.

    CAS  PubMed  Google Scholar 

  27. Zerrouqi A, Pyrzynska B, Febbraio M, Brat DJ, Van Meir EG . P14ARF inhibits human glioblastoma-induced angiogenesis by upregulating the expression of TIMP3. J Clin Invest 2012; 122: 1283–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sherr CJ . Tumor surveillance via the ARF-p53 pathway. Genes Dev 1998; 12: 2984–2991.

    Article  CAS  PubMed  Google Scholar 

  29. Kanellou P, Zaravinos A, Zioga M, Spandidos DA . Deregulation of the tumour suppressor genes p14(ARF), p15(INK4b), p16(INK4a) and p53 in basal cell carcinoma. Br J Dermatol 2009; 160: 1215–1221.

    Article  CAS  PubMed  Google Scholar 

  30. Saridaki Z, Koumantaki E, Liloglou T, Sourvinos G, Papadopoulos O, Zoras O et al. High frequency of loss of heterozygosity on chromosome region 9p21-p22 but lack of p16INK4a/p19ARF mutations in Greek patients with basal cell carcinoma of the skin. J Invest Dermatol 2000; 115: 719–725.

    Article  CAS  PubMed  Google Scholar 

  31. Adolphe C, Hetherington R, Ellis T, Wainwright B . Patched1 functions as a gatekeeper by promoting cell cycle progression. Cancer Res 2006; 66: 2081–2088.

    Article  CAS  PubMed  Google Scholar 

  32. Inoue K, Roussel MF, Sherr CJ . Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. Proc Natl Acad Sci USA 1999; 96: 3993–3998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abe Y, Oda-Sato E, Tobiume K, Kawauchi K, Taya Y, Okamoto K et al. Hedgehog signaling overrides p53-mediated tumor suppression by activating Mdm2. Proc Natl Acad Sci USA 2008; 105: 4838–4843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li ZJ, Mack SC, Mak TH, Angers S, Taylor MD, Hui CC . Evasion of p53 and G2/M checkpoints are characteristic of Hh-driven basal cell carcinoma. Oncogene 2014; 33: 2674–2680.

    Article  CAS  PubMed  Google Scholar 

  35. Rogakou EP, Nieves-Neira W, Boon C, Pommier Y, Bonner WM . Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J Biol Chem 2000; 275: 9390–9395.

    Article  CAS  PubMed  Google Scholar 

  36. Campaner S, Amati B . Two sides of the Myc-induced DNA damage response: from tumor suppression to tumor maintenance. Cell Div 2012; 7: 6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005; 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  38. Abulaiti A, Fikaris AJ, Tsygankova OM, Meinkoth JL . Ras induces chromosome instability and abrogation of the DNA damage response. Cancer Res 2006; 66: 10505–10512.

    Article  CAS  PubMed  Google Scholar 

  39. Sarkisian CJ, Keister BA, Stairs DB, Boxer RB, Moody SE, Chodosh LA . Dose-dependent oncogene-induced senescence in vivo and its evasion during mammary tumorigenesis. Nat Cell Biol 2007; 9: 493–505.

    Article  CAS  PubMed  Google Scholar 

  40. Kraemer KH, Lee MM, Scotto J . DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 1984; 5: 511–514.

    Article  CAS  PubMed  Google Scholar 

  41. Orlando G, Khoronenkova SV, Dianova II, Parsons JL, Dianov GL . ARF induction in response to DNA strand breaks is regulated by PARP1. Nucleic Acids Res 2014; 42: 2320–2329.

    Article  CAS  PubMed  Google Scholar 

  42. Kamijo T, van de Kamp E, Chong MJ, Zindy F, Diehl JA, Sherr CJ et al. Loss of the ARF tumor suppressor reverses premature replicative arrest but not radiation hypersensitivity arising from disabled atm function. Cancer Res 1999; 59: 2464–2469.

    CAS  PubMed  Google Scholar 

  43. Kelly-Spratt KS, Gurley KE, Yasui Y, Kemp CJ . p19Arf suppresses growth, progression, and metastasis of Hras-driven carcinomas through p53-dependent and -independent pathways. PLoS Biol 2004; 2: E242.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Konig S, Nitzki F, Uhmann A, Dittmann K, Theiss-Suennemann J, Herrmann M et al. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice. PLoS One 2014; 9: e93555.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Herranz S, Traves PG, Luque A, Hortelano S . Role of the tumor suppressor ARF in macrophage polarization: enhancement of the M2 phenotype in ARF-deficient mice. Oncoimmunology 2012; 1: 1227–1238.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ellis T, Smyth I, Riley E, Graham S, Elliot K, Narang M et al. Patched 1 conditional null allele in mice. Genesis 2003; 36: 158–161.

    Article  CAS  PubMed  Google Scholar 

  47. Wang GY, So PL, Wang L, Libove E, Wang J, Epstein EH Jr . Establishment of murine basal cell carcinoma allografts: a potential model for preclinical drug testing and for molecular analysis. J Invest Dermatol 2011; 131: 2298–2305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Peter Lamb at Exelixis for providing XL-139 and Charles Sherr for both providing mice carrying the Arf-GFP allele and for wise, ongoing counsel. This work was supported by NIH grant # R01CA163611 (PI: EHE), the American Skin Association (PI: GYW) and the Skin Cancer Foundation (PI: GYW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Y Wang or E H Epstein Jr.

Ethics declarations

Competing interests

EHE is a founder and shareholder in PellePharm. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wood, C., Dolorito, J. et al. Differing tumor-suppressor functions of Arf and p53 in murine basal cell carcinoma initiation and progression. Oncogene 36, 3772–3780 (2017). https://doi.org/10.1038/onc.2017.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.12

This article is cited by

Search

Quick links