Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Integration of hypoxic HIF-α signaling in blood cancers

Abstract

Hypoxia (low O2) is a fundamental microenvironmental determinant of bone marrow (BM) pathophysiology. Recent data from molecular and clinical studies indicate that hematopoiesis and leukemogenesis are dependent upon hypoxia-inducible factors (HIFs), a family of essential transcriptional activators mediating the metazoan hypoxic response. In blood cancers, the synergism between HIF overexpression and stabilization within the hypoxic BM microenvironment promotes disease progression, therapy resistance and relapse. In this review, we will summarize current advances in the understanding of HIF signaling in blood cancers and its translational implications for hypoxic-targeted therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Draenert K, Draenert Y . The vascular system of bone marrow. Scan Electron Microsc 1980; 4: 113–122.

    Google Scholar 

  2. Cipolleschi MG, Dello Sbarba P, Olivotto M . The role of hypoxia in the maintenance of hematopoietic stem cells. Blood 1993; 82: 2031–2037.

    Article  CAS  PubMed  Google Scholar 

  3. Lichtman MA . The ultrastructure of the hemopoietic environment of the marrow: a review. Exp Hematol 1981; 9: 391–410.

    CAS  PubMed  Google Scholar 

  4. Suda T, Takubo K, Semenza GL . Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9: 298–310.

    Article  CAS  PubMed  Google Scholar 

  5. Giuntoli S, Rovida E, Gozzini A, Barbetti V, Cipolleschi MG, Olivotto M et al. Severe hypoxia defines heterogeneity and selects highly immature progenitors within clonal erythroleukemia cells. Stem Cells 2007; 25: 1119–1125.

    Article  CAS  PubMed  Google Scholar 

  6. Ivanović Z, Bartolozzi B, Bernabei PA, Cipolleschi MG, Rovida E, Milenković P et al. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br J Haematol 2000; 108: 424–429.

    Article  PubMed  Google Scholar 

  7. Simon MC, Keith B . The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 2008; 9: 285–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457: 92–96.

    Article  CAS  PubMed  Google Scholar 

  9. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    Article  CAS  PubMed  Google Scholar 

  10. Kiel MJ, Yilmaz ÖH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  PubMed  Google Scholar 

  11. Schofield R . The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  PubMed  Google Scholar 

  12. Schofield R . The stem cell system. Biomed Pharmacother 1983; 37: 375–380.

    CAS  PubMed  Google Scholar 

  13. Winkler IG, Barbier V, Wadley R, Zannettino ACW, Williams S, Lévesque J-P . Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 2010; 116: 375–385.

    Article  CAS  PubMed  Google Scholar 

  14. Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD . Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104: 5431–5436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chow DC, Wenning LA, Miller WM, Papoutsakis ET . Modeling pO2 Distributions in the bone marrow hematopoietic compartment. II. Modified Kroghian models. Biophys J 2001; 81: 685–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chow DC, Wenning LA, Miller WM, Papoutsakis ET . Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J 2001; 81: 675–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature 2014; 508: 269–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Evans RG, Gardiner BS, Smith DW, O’Connor PM . Intrarenal oxygenation: unique challenges and the biophysical basis of homeostasis. Am J Physiol Renal Physiol 2008; 295: F1259–F1270.

    Article  CAS  PubMed  Google Scholar 

  19. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15: 533–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC . Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 2003; 112: 126–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ivanovic Z, Hermitte F, Brunet de la Grange P, Dazey B, Belloc F, Lacombe F et al. Simultaneous maintenance of human cord blood SCID-repopulating cells and expansion of committed progenitors at low O2 concentration (3%). Stem Cells 2004; 22: 716–724.

    Article  PubMed  Google Scholar 

  22. Mantel CR, O’Leary HA, Chitteti BR, Huang X, Cooper S, Hangoc G et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell 2015; 161: 1553–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang GL, Semenza GL . Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995; 270: 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  24. Duan C . Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Physiol Cell Physiol 2016; 310: C260–C269.

    Article  PubMed  Google Scholar 

  25. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54.

    Article  CAS  PubMed  Google Scholar 

  26. Kaelin WG, Ratcliffe PJ . Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393–402.

    Article  CAS  PubMed  Google Scholar 

  27. Schito L, Semenza GL . Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2016; 2: 758–770.

    Article  PubMed  Google Scholar 

  28. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996; 271: 32529–32537.

    Article  CAS  PubMed  Google Scholar 

  29. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML . Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002; 295: 858–861.

    Article  CAS  PubMed  Google Scholar 

  30. Mahon PC, Hirota K, Semenza GL . FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001; 15: 2675–2686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Arany Z, Huang LE, Eckner R, Bhattacharya S, Jiang C, Goldberg MA et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 1996; 93: 12969–12973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Simsek T, Kocabas F, Zheng J, DeBerardinis RJ, Mahmoud AI, Olson EN et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7: 380–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kocabas F, Zheng J, Thet S, Copeland NG, Jenkins NA, DeBerardinis RJ et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012; 120: 4963–4972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pedersen M, Löfstedt T, Sun J, Holmquist-Mengelbier L, Påhlman S, Rönnstrand L . Stem cell factor induces HIF-1alpha at normoxia in hematopoietic cells. Biochem Biophys Res Commun 2008; 377: 98–103.

    Article  CAS  PubMed  Google Scholar 

  35. Kirito K, Fox N, Komatsu N, Kaushansky K . Thrombopoietin enhances expression of vascular endothelial growth factor (VEGF) in primitive hematopoietic cells through induction of HIF-1α. Blood 2005; 105: 4258–4263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mayerhofer M, Valent P, Sperr WR, Griffin JD, Sillaber C . BCR/ABL induces expression of vascular endothelial growth factor and its transcriptional activator, hypoxia inducible factor-1alpha, through a pathway involving phosphoinositide 3-kinase and the mammalian target of rapamycin. Blood 2002; 100: 3767–3775.

    Article  CAS  PubMed  Google Scholar 

  37. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7: 391–402.

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh AK, Shanafelt TD, Cimmino A, Taccioli C, Volinia S, Liu C et al. Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood 2009; 113: 5568–5574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Koivunen P, Lee S, Duncan CG, Lopez G, Lu G, Ramkissoon S et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 2012; 483: 484–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324: 261–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gross S, Cairns RA, Minden MD, Driggers EM, Bittinger MA, Jang HG et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010; 207: 339–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abbas S, Lugthart S, Kavelaars FG, Schelen A, Koenders JE, Zeilemaker A et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value. Blood 2010; 116: 2122–2126.

    Article  CAS  PubMed  Google Scholar 

  45. Rey S, Semenza GL . Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc Res 2010; 86: 236–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perez-Atayde AR, Sallan SE, Tedrow U, Connors S, Allred E, Folkman J . Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia. Am J Pathol 1997; 150: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Padró T, Ruiz S, Bieker R, Bürger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.

    Article  PubMed  Google Scholar 

  48. Hussong JW, Rodgers GM, Shami PJ . Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.

    Article  CAS  PubMed  Google Scholar 

  49. Harrison JS, Rameshwar P, Chang V, Bandari P . Oxygen saturation in the bone marrow of healthy volunteers. Blood 2002; 99: 394.

    Article  CAS  PubMed  Google Scholar 

  50. Koomagi R, Zintl F, Sauerbrey A, Volm M . Vascular endothelial growth factor in newly diagnosed and recurrent childhood acute lymphoblastic leukemia as measured by real-time quantitative polymerase chain reaction. Clin Cancer Res 2001; 7: 3381–3384.

    CAS  PubMed  Google Scholar 

  51. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F et al. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 1994; 87: 503–508.

    Article  CAS  PubMed  Google Scholar 

  52. Lundberg LG, Lerner R, Sundelin P, Rogers R, Folkman J, Palmblad J . Bone marrow in polycythemia vera, chronic myelocytic leukemia, and myelofibrosis has an increased vascularity. Am J Pathol 2000; 157: 15–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Molica S, Vitelli G, Levato D, Gandolfo GM, Liso V . Increased serum levels of vascular endothelial growth factor predict risk of progression in early B-cell chronic lymphocytic leukaemia. Br J Haematol 1999; 107: 605–610.

    Article  CAS  PubMed  Google Scholar 

  54. Verstovsek S, Kantarjian H, Manshouri T, Cortes J, Giles FJ, Rogers A et al. Prognostic significance of cellular vascular endothelial growth factor expression in chronic phase chronic myeloid leukemia. Blood 2002; 99: 2265–2267.

    Article  CAS  PubMed  Google Scholar 

  55. Wellmann S, Guschmann M, Griethe W, Eckert C, Stackelberg A, Lottaz C et al. Activation of the HIF pathway in childhood ALL, prognostic implications of VEGF. Leukemia 2004; 18: 926–933.

    Article  CAS  PubMed  Google Scholar 

  56. Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000; 96: 3181–3187.

    Article  CAS  PubMed  Google Scholar 

  57. Lee YK, Bone ND, Strege AK, Shanafelt TD, Jelinek DF, Kay NE . VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood 2004; 104: 788–794.

    Article  CAS  PubMed  Google Scholar 

  58. Giatromanolaki A, Bai M, Margaritis D, Bourantas KL, Koukourakis MI, Sivridis E et al. Hypoxia and activated VEGF/receptor pathway in multiple myeloma. Anticancer Res 2010; 30: 2831–2836.

    CAS  PubMed  Google Scholar 

  59. Martin SK, Diamond P, Williams SA, To LB, Peet DJ, Fujii N et al. Hypoxia-inducible factor-2 is a novel regulator of aberrant CXCL12 expression in multiple myeloma plasma cells. Haematologica 2010; 95: 776–784.

    Article  CAS  PubMed  Google Scholar 

  60. Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, Lazzaretti M et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 2010; 24: 1967–1970.

    Article  CAS  PubMed  Google Scholar 

  61. Storti P, Bolzoni M, Donofrio G, Airoldi I, Guasco D, Toscani D et al. Hypoxia-inducible factor (HIF)-1α suppression in myeloma cells blocks tumoral growth in vivo inhibiting angiogenesis and bone destruction. Leukemia 2013; 27: 1697–1706.

    Article  CAS  PubMed  Google Scholar 

  62. Asosingh K, De Raeve H, de Ridder M, Storme GA, Willems A, Van Riet I et al. Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 2005; 90: 810–817.

    CAS  PubMed  Google Scholar 

  63. Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A et al. Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res 2009; 69: 5082–5090.

    Article  CAS  PubMed  Google Scholar 

  64. Shou Y, Martelli ML, Gabrea A, Qi Y, Brents LA, Roschke A et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 2000; 97: 228–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim J, Tchernyshyov I, Semenza GL, Dang CV . HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3: 177–185.

    Article  PubMed  CAS  Google Scholar 

  66. Semenza GL . HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest 2013; 123: 3664–3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12: 49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Velasco-Hernandez T, Hyrenius-Wittsten A, Rehn M, Bryder D, Cammenga J . HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood 2014; 124: 3597–3607.

    Article  CAS  PubMed  Google Scholar 

  69. Battisti V, Maders LDK, Bagatini MD, Santos KF, Spanevello RM, Maldonado PA et al. Measurement of oxidative stress and antioxidant status in acute lymphoblastic leukemia patients. Clin Biochem 2008; 41: 511–518.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou F-L, Zhang W-G, Wei Y-C, Meng S, Bai G-G, Wang B-Y et al. Involvement of oxidative stress in the relapse of acute myeloid leukemia. J Biol Chem 2010; 285: 15010–15015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou F, Shen Q, Claret FX . Novel roles of reactive oxygen species in the pathogenesis of acute myeloid leukemia. J Leukoc Biol 2013; 94: 423–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li L, Li M, Sun C, Francisco L, Chakraborty S, Sabado M et al. Altered hematopoietic cell gene expression precedes development of therapy-related myelodysplasia/acute myeloid leukemia and identifies patients at risk. Cancer Cell 2011; 20: 591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013; 12: 329–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang CC, Sadek HA . Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal 2014; 20: 1891–1901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Zhao F, Mancuso A, Bui TV, Tong X, Gruber JJ, Swider CR et al. Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene 2010; 29: 2962–2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Reilly JT . Receptor tyrosine kinases in normal and malignant haematopoiesis. Blood Rev 2003; 17: 241–248.

    Article  PubMed  Google Scholar 

  78. Dash A, Gilliland DG . Molecular genetics of acute myeloid leukaemia. Best Pract Res Clin Haematol 2001; 14: 49–64.

    Article  CAS  PubMed  Google Scholar 

  79. Ikeda H, Kanakura Y, Tamaki T, Kuriu A, Kitayama H, Ishikawa J et al. Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood 1991; 78: 2962–2968.

    Article  CAS  PubMed  Google Scholar 

  80. Lyman SD, Jacobsen SE . c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 1998; 91: 1101–1134.

    Article  CAS  PubMed  Google Scholar 

  81. Gari M, Goodeve A, Wilson G, Winship P, Langabeer S, Linch D et al. c-kit proto-oncogene exon 8 in-frame deletion plus insertion mutations in acute myeloid leukaemia. Br J Haematol 1999; 105: 894–900.

    Article  CAS  PubMed  Google Scholar 

  82. Han Z-B, Ren H, Zhao H, Chi Y, Chen K, Zhou B et al. Hypoxia-inducible factor (HIF)-1 alpha directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis 2008; 29: 1853–1861.

    Article  CAS  PubMed  Google Scholar 

  83. Blair A, Sutherland HJ . Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 2000; 28: 660–671.

    Article  CAS  PubMed  Google Scholar 

  84. Desplat V, Faucher J-L, Mahon FX, Dello Sbarba P, Praloran V, Ivanovic Z . Hypoxia modifies proliferation and differentiation of CD34(+) CML cells. Stem Cells 2002; 20: 347–354.

    Article  CAS  PubMed  Google Scholar 

  85. Griessinger E, Anjos-Afonso F, Pizzitola I, Rouault-Pierre K, Vargaftig J, Taussig D et al. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Stem Cells Transl Med 2014; 3: 520–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W . Chemokine receptor CXCR4 downregulated by von Hippel–Lindau tumour suppressor pVHL. Nature 2003; 425: 307–311.

    Article  CAS  PubMed  Google Scholar 

  87. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10: 858–864.

    Article  CAS  PubMed  Google Scholar 

  88. Valsecchi R, Coltella N, Belloni D, Ponente M, ten Hacken E, Scielzo C et al. HIF-1α regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood 2016; 127: 1987–1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Konoplev S, Rassidakis GZ, Estey E, Kantarjian H, Liakou CI, Huang X et al. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer 2007; 109: 1152–1156.

    Article  CAS  PubMed  Google Scholar 

  90. Rombouts EJC, Pavic B, Löwenberg B, Ploemacher RE . Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood 2004; 104: 550–557.

    Article  CAS  PubMed  Google Scholar 

  91. Burger JA, Burger M, Kipps TJ . Chronic lymphocytic leukemia B cells express functional CXCR4 chemokine receptors that mediate spontaneous migration beneath bone marrow stromal cells. Blood 1999; 94: 3658–3667.

    Article  CAS  PubMed  Google Scholar 

  92. Sanz-Rodríguez F, Hidalgo A, Teixidó J . Chemokine stromal cell-derived factor-1α modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  PubMed  Google Scholar 

  93. Jin L, Tabe Y, Konoplev S, Xu Y, Leysath CE, Lu H et al. CXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells. Mol Cancer Ther 2008; 7: 48–58.

    Article  CAS  PubMed  Google Scholar 

  94. Geay J-F, Buet D, Zhang Y, Foudi A, Jarrier P, Berthebaud M et al. p210BCR-ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression. Cancer Res 2005; 65: 2676–2683.

    Article  CAS  PubMed  Google Scholar 

  95. Lévesque J-P, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Konopleva M, Benton CB, Thall PF, Zeng Z, Shpall E, Ciurea S et al. Leukemia cell mobilization with G-CSF plus plerixafor during busulfan-fludarabine conditioning for allogeneic stem cell transplantation. Bone Marrow Transplant 2015; 50: 939–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cho B-S, Zeng Z, Mu H, Wang Z, Konoplev S, McQueen T et al. Antileukemia activity of the novel peptidic CXCR4 antagonist LY2510924 as monotherapy and in combination with chemotherapy. Blood 2015; 126: 222–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Forristal CE, Nowlan B, Jacobsen RN, Barbier V, Walkinshaw G, Walkley CR et al. HIF-1α is required for hematopoietic stem cell mobilization and 4-prolyl hydroxylase inhibitors enhance mobilization by stabilizing HIF-1α. Leukemia 2015; 29: 1366–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Frolova O, Samudio I, Benito JM, Jacamo R, Kornblau SM, Markovic A et al. Regulation of HIF-1α signaling and chemoresistance in acute lymphocytic leukemia under hypoxic conditions of the bone marrow microenvironment. Cancer Biol Ther 2012; 13: 858–870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 2005; 65: 9047–9055.

    Article  CAS  PubMed  Google Scholar 

  101. Wang Y, Liu Y, Tang F, Bernot KM, Schore R, Marcucci G et al. Echinomycin protects mice against relapsed acute myeloid leukemia without adverse effect on hematopoietic stem cells. Blood 2014; 124: 1127–1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fiegl M, Samudio I, Clise-Dwyer K, Burks JK, Mnjoyan Z, Andreeff M . CXCR4 expression and biologic activity in acute myeloid leukemia are dependent on oxygen partial pressure. Blood 2009; 113: 1504–1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Buick RN, Pollak MN . Perspectives on clonogenic tumor cells, stem cells, and oncogenes. Cancer Res 1984; 44: 4909–4918.

    CAS  PubMed  Google Scholar 

  104. Warner JK, Wang JCY, Hope KJ, Jin L, Dick JE . Concepts of human leukemic development. Oncogene 2004; 23: 7164–7177.

    Article  CAS  PubMed  Google Scholar 

  105. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    Article  CAS  PubMed  Google Scholar 

  106. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  107. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  108. Taussig DC, Vargaftig J, Miraki-Moud F, Griessinger E, Sharrock K, Luke T et al. Leukemia-initiating cells from some acute myeloid leukemia patients with mutated nucleophosmin reside in the CD34(-) fraction. Blood 2010; 115: 1976–1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bonnet D . New heterogeneity of the leukemic stem cells. In: Andreeff M (ed.). Targeted Therapy of Acute Myeloid Leukemia. Springer: New York, NY, 2015, pp 559–572.

    Chapter  Google Scholar 

  110. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  PubMed  Google Scholar 

  111. Konopleva MY, Jordan CT . Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol 2011; 29: 591–599.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12: 446–451.

    Article  CAS  PubMed  Google Scholar 

  113. Tothova Z, Gilliland DG . FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1: 140–152.

    Article  CAS  PubMed  Google Scholar 

  114. Terpstra W, Prins A, Ploemacher RE, Wognum BW, Wagemaker G, Löwenberg B et al. Long-term leukemia-initiating capacity of a CD34-subpopulation of acute myeloid leukemia. Blood 1996; 87: 2187–2194.

    Article  CAS  PubMed  Google Scholar 

  115. Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998; 12: 149–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Almarza E, Segovia JC, Guenechea G, Gómez SG, Ramírez A, Bueren JA . Regulatory elements of the vav gene drive transgene expression in hematopoietic stem cells from adult mice. Exp Hematol 2004; 32: 360–364.

    Article  CAS  PubMed  Google Scholar 

  117. Zhang H, Li H, Xi HS, Li S . HIF1α is required for survival maintenance of chronic myeloid leukemia stem cells. Blood 2012; 119: 2595–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wang Y, Liu Y, Malek SN, Zheng P, Liu Y . Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell 2011; 8: 399–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Giambra V, Jenkins CE, Lam SH, Hoofd C, Belmonte M, Wang X et al. Leukemia stem cells in T-ALL require active Hif1α and Wnt signaling. Blood 2015; 125: 3917–3927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rey S, Schito L, Koritzinsky M, Wouters BG . Molecular targeting of hypoxia in radiotherapy. Adv Drug Deliv Rev 2017; 109: 45–62.

    Article  CAS  PubMed  Google Scholar 

  122. Rouault-Pierre K, Lopez-Onieva L, Foster K, Anjos-Afonso F, Lamrissi-Garcia I, Serrano-Sanchez M et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 2013; 13: 549–563.

    Article  CAS  PubMed  Google Scholar 

  123. Forristal CE, Brown AL, Helwani FM, Winkler IG, Nowlan B, Barbier V et al. Hypoxia inducible factor (HIF)-2α accelerates disease progression in mouse models of leukemia and lymphoma but is not a poor prognosis factor in human AML. Leukemia 2015; 29: 2075–2085.

    Article  CAS  PubMed  Google Scholar 

  124. Lawrence HJ, Rozenfeld S, Cruz C, Matsukuma K, Kwong A, Kömüves L et al. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia 1999; 13: 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  125. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 2002; 16: 186–195.

    Article  CAS  PubMed  Google Scholar 

  126. Vukovic M, Guitart AV, Sepulveda C, Villacreces A, O’Duibhir E, Panagopoulou TI et al. Hif-1α and Hif-2α synergize to suppress AML development but are dispensable for disease maintenance. J Exp Med 2015; 212: 2223–2234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kroon E, Krosl J, Thorsteinsdottir U, Baban S, Buchberg AM, Sauvageau G . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J 1998; 17: 3714–3725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dobson Cl, Warren Aj, Pannell R, Forster A, Lavenir I, Corral J et al. The Mll–AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999; 18: 3564–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Vukovic M, Sepulveda C, Subramani C, Guitart AV, Mohr J, Allen L et al. Adult hematopoietic stem cells lacking Hif-1α self-renew normally. Blood 2016; 127: 2841–2846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gordan JD, Bertout JA, Hu C-J, Diehl JA, Simon MC . HIF-2α promotes hypoxic cell proliferation by enhancing c-Myc transcriptional activity. Cancer Cell 2007; 11: 335–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Hubbi ME, Kshitiz, Gilkes DM, Rey S, Wong CC, Luo W et al. A nontranscriptional role for HIF-1α as a direct inhibitor of DNA replication. Sci Signal 2013; 6: ra10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Cho H, Du X, Rizzi JP, Liberzon E, Chakraborty AA, Gao W et al. On-target efficacy of a HIF2α antagonist in preclinical kidney cancer models. Nature 2016; 539: 107–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Chen W, Hill H, Christie A, Kim MS, Holloman E, Pavia-Jimenez A et al. Targeting renal cell carcinoma with a HIF-2 antagonist. Nature 2016; 539: 112–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Meads MB, Hazlehurst LA, Dalton WS . The Bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 2008; 14: 2519–2526.

    Article  CAS  PubMed  Google Scholar 

  135. Konopleva M, Tabe Y, Zeng Z, Andreeff M . Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat Rev 2009; 12: 103–113.

    Article  CAS  Google Scholar 

  136. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  137. Chen H, Wang N, Yang G, Guo Y, Shen Y, Wang X et al. The expression and function of E3 ligase SIAH2 in acute T lymphoblastic leukemia. Leuk Res 2016; 42: 28–36.

    Article  PubMed  CAS  Google Scholar 

  138. Zou J, Li P, Lu F, Liu N, Dai J, Ye J et al. Notch1 is required for hypoxia-induced proliferation, invasion and chemoresistance of T-cell acute lymphoblastic leukemia cells. J Hematol Oncol 2013; 6: 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Petit C, Gouel F, Dubus I, Heuclin C, Roget K, Vannier JP . Hypoxia promotes chemoresistance in acute lymphoblastic leukemia cell lines by modulating death signaling pathways. BMC Cancer 2016; 16: 746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Campos L, Rouault JP, Sabido O, Oriol P, Roubi N, Vasselon C et al. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood 1993; 81: 3091–3096.

    Article  CAS  PubMed  Google Scholar 

  141. Matsunaga T, Imataki O, Torii E, Kameda T, Shide K, Shimoda H et al. Elevated HIF-1α expression of acute myelogenous leukemia stem cells in the endosteal hypoxic zone may be a cause of minimal residual disease in bone marrow after chemotherapy. Leuk Res 2012; 36: e122–e124.

    Article  CAS  PubMed  Google Scholar 

  142. Chua YL, Dufour E, Dassa EP, Rustin P, Jacobs HT, Taylor CT et al. Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J Biol Chem 2010; 285: 31277–31284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Konopleva M, Konoplev S, Hu W, Zaritskey AY, Afanasiev BV, Andreeff M . Stromal cells prevent apoptosis of AML cells by up-regulation of anti-apoptotic proteins. Leukemia 2002; 16: 1713–1724.

    Article  CAS  PubMed  Google Scholar 

  144. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  145. Ria R, Catacchio I, Berardi S, De Luisi A, Caivano A, Piccoli C et al. HIF-1α of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target. Clin Cancer Res 2014; 20: 847–858.

    Article  CAS  PubMed  Google Scholar 

  146. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood 2011; 118: 5565–5572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to Imatinib or Interferon Alfa plus Cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  PubMed  Google Scholar 

  148. Ng KP, Manjeri A, Lee KL, Huang W, Tan SY, Chuah CTH et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood 2014; 123: 3316–3326.

    Article  CAS  PubMed  Google Scholar 

  149. Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L et al. PML/RAR alpha fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood 2000; 96: 1531–1537.

    Article  CAS  PubMed  Google Scholar 

  150. de Thé H, Chomienne C, Lanotte M, Degos L, Dejean A . The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990; 347: 558–561.

    Article  PubMed  Google Scholar 

  151. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor, PML. Cell 1991; 66: 663–674.

    Article  CAS  PubMed  Google Scholar 

  152. Lehmann-Che J, Bally C, de Thé H . Resistance to therapy in acute promyelocytic leukemia. N Engl J Med 2014; 371: 1170–1172.

    Article  PubMed  Google Scholar 

  153. Coltella N, Percio S, Valsecchi R, Cuttano R, Guarnerio J, Ponzoni M et al. HIF factors cooperate with PML-RARα to promote acute promyelocytic leukemia progression and relapse. EMBO Mol Med 2014; 6: 640–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chen H, Shen Y, Gong F, Jiang Y, Zhang R . HIF-α promotes chronic myelogenous leukemia cell proliferation by upregulating p21 expression. Cell Biochem Biophys 2015; 72: 179–183.

    Article  CAS  PubMed  Google Scholar 

  155. Tong H, Hu C, Zhuang Z, Wang L, Jin J . Hypoxia-inducible factor-1α expression indicates poor prognosis in myelodysplastic syndromes. Leuk Lymphoma 2012; 53: 2412–2418.

    Article  CAS  PubMed  Google Scholar 

  156. Deeb G, Vaughan MM, McInnis I, Ford LA, Sait SNJ, Starostik P et al. Hypoxia-inducible factor-1α protein expression is associated with poor survival in normal karyotype adult acute myeloid leukemia. Leuk Res 2011; 35: 579–584.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Konopleva.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schito, L., Rey, S. & Konopleva, M. Integration of hypoxic HIF-α signaling in blood cancers. Oncogene 36, 5331–5340 (2017). https://doi.org/10.1038/onc.2017.119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.119

This article is cited by

Search

Quick links