Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms

Abstract

The insulin-like growth factor (IGF)2/IGF1 receptor (IGF1R) signaling axis has an important role in intestinal carcinogenesis and overexpression of IGF2 is an accepted risk factor for colorectal cancer (CRC) development. Genetic amplifications and loss of imprinting contribute to the upregulation of IGF2, but insufficiently explain the extent of IGF2 expression in a subset of patients. Here, we show that IGF2 was specifically induced in the tumor stroma of CRC and identified cancer-associated fibroblasts (CAFs) as the major source. Further, we provide functional evidence that stromal IGF2, via the paracrine IGF1R/insulin receptor axis, activated pro-survival AKT signaling in CRC cell lines. In addition to its effects on malignant cells, autocrine IGF2/IGF1R signaling in CAFs induced myofibroblast differentiation in terms of alpha-smooth muscle actin expression and contractility in floating collagen gels. This was further augmented in concert with transforming growth factor-β (TGFβ) signaling suggesting a cooperative mechanism. However, we demonstrated that IGF2 neither induced TGFβ/smooth muscle actin/mothers against decapentaplegic (SMAD) signaling nor synergized with TGFβ to hyperactivate this pathway in two dimensional and three dimensional cultures. IGF2-mediated physical matrix remodeling by CAFs, but not changes in extracellular matrix-modifying proteases or other secreted factors acting in a paracrine manner on/in cancer cells, facilitated subsequent tumor cell invasion in organotypic co-cultures. Consistently, colon cancer cells co-inoculated with CAFs expressing endogenous IGF2 in mouse xenograft models exhibited elevated invasiveness and dissemination capacity, as well as increased local tumor regrowth after primary tumor resection compared with conditions with IGF2-deficient CAFs. In line, expression of IGF2 correlated with elevated relapse rates and poor survival in CRC patients. In agreement with our results, high-level coexpression of IGF2 and TGFβ was predicting adverse outcome with higher accuracy than increased expression of the individual genes alone. Taken together, we demonstrate that stroma-induced IGF2 promotes colon cancer progression in a paracrine and autocrine manner and propose IGF2 as potential target for tumor stroma cotargeting strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  PubMed  Google Scholar 

  2. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B et al. Colorectal cancer. Lancet 2010; 375: 1030–1047.

    PubMed  Google Scholar 

  3. Pollak M . The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 2012; 12: 159–169.

    CAS  PubMed  Google Scholar 

  4. Pollak M . Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008; 8: 915–928.

    CAS  PubMed  Google Scholar 

  5. Lee J, Jain A, Kim P, Lee T, Kuller A, Princen F et al. Activated cMET and IGF1R-driven PI3K signaling predicts poor survival in colorectal cancers independent of KRAS mutational status. PLoS ONE 2014; 9: e103551.

    PubMed  PubMed Central  Google Scholar 

  6. Zanella ER, Galimi F, Sassi F, Migliardi G, Cottino F, Leto SM et al. IGF2 is an actionable target that identifies a distinct subpopulation of colorectal cancer patients with marginal response to anti-EGFR therapies. Sci Transl Med 2015; 7: 272ra12.

    PubMed  Google Scholar 

  7. Baba Y, Nosho K, Shima K, Huttenhower C, Tanaka N, Hazra A et al. Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis. Gastroenterology 2010; 139: 1855–1864.

    CAS  PubMed  Google Scholar 

  8. Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM . The type 1 insulin-like growth factor receptor pathway. Clin Cancer Res 2008; 14: 6364–6370.

    CAS  PubMed  Google Scholar 

  9. Riedemann J, Macaulay VM . IGF1R signalling and its inhibition. Endocr Relat Cancer 2006; 13 (Suppl 1): S33–S43.

    CAS  PubMed  Google Scholar 

  10. Sell C, Rubini M, Rubin R, Liu JP, Efstratiadis A, Baserga R . Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci USA 1993; 90: 11217–11221.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Valentinis B, Baserga R . IGF-I receptor signalling in transformation and differentiation. Mol Pathol 2001; 54: 133–137.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Google Scholar 

  13. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR et al. Gene expression profiles in normal and cancer cells. Science 1997; 276: 1268–1272.

    CAS  PubMed  Google Scholar 

  14. Livingstone C . IGF2 and cancer. Endocr Relat Cancer 2013; 20: R321–R339.

    CAS  PubMed  Google Scholar 

  15. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR, Brandenburg S et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 2003; 299: 1753–1755.

    CAS  PubMed  Google Scholar 

  16. Kaneda A, Feinberg AP . Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res 2005; 65: 11236–11240.

    CAS  PubMed  Google Scholar 

  17. Sakatani T, Kaneda A, Iacobuzio-Donahue CA, Carter MG, de Boom Witzel S, Okano H et al. Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 2005; 307: 1976–1978.

    CAS  PubMed  Google Scholar 

  18. Harper J, Burns JL, Foulstone EJ, Pignatelli M, Zaina S, Hassan AB . Soluble IGF2 receptor rescues Apc(Min/+) intestinal adenoma progression induced by Igf2 loss of imprinting. Cancer Res 2006; 66: 1940–1948.

    CAS  PubMed  Google Scholar 

  19. Singer C, Rasmussen A, Smith HS, Lippman ME, Lynch HT, Cullen KJ . Malignant breast epithelium selects for insulin-like growth factor II expression in breast stroma: evidence for paracrine function. Cancer Res 1995; 55: 2448–2454.

    CAS  PubMed  Google Scholar 

  20. Church DN, Phillips BR, Stuckey DJ, Barnes DJ, Buffa FM, Manek S et al. Igf2 ligand dependency of Pten(+/−) developmental and tumour phenotypes in the mouse. Oncogene 2012; 31: 3635–3646.

    CAS  PubMed  Google Scholar 

  21. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 2014; 5: 3472.

    PubMed  Google Scholar 

  22. Kalluri R, Zeisberg M . Fibroblasts in cancer. Nat Rev Cancer 2006; 6: 392–401.

    CAS  PubMed  Google Scholar 

  23. Rupp C, Scherzer M, Rudisch A, Unger C, Haslinger C, Schweifer N et al. IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 2015; 34: 815–825.

    CAS  PubMed  Google Scholar 

  24. Rhodes DR, Kalyana-Sundaram S, Mahavisno V, Varambally R, Yu J, Briggs BB et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18 000 cancer gene expression profiles. Neoplasia 2007; 9: 166–180.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Nishida N, Nagahara M, Sato T, Mimori K, Sudo T, Tanaka F et al. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clin Cancer Res 2012; 18: 3054–3070.

    CAS  PubMed  Google Scholar 

  26. Singh P, Dai B, Given RL, Lu X, Holthuizen PE . Differential activation of IGF-II promoters P3 and P4 in Caco-2 cells during growth and differentiation. Gastroenterology 1998; 114: 1221–1229.

    CAS  PubMed  Google Scholar 

  27. Wang H, Ge S, Qian G, Li W, Cui J, Wang G et al. Restoration of IGF2 imprinting by polycomb repressive complex 2 docking factor SUZ12 in colon cancer cells. Exp Cell Res 2015; 338: 214–221.

    CAS  PubMed  Google Scholar 

  28. Greenall SA, Bentley JD, Pearce LA, Scoble JA, Sparrow LG, Bartone NA et al. Biochemical characterization of individual human glycosylated pro-insulin-like growth factor (IGF)-II and big-IGF-II isoforms associated with cancer. J Biol Chem 2013; 288: 59–68.

    CAS  PubMed  Google Scholar 

  29. Gao J, Chesebrough JW, Cartlidge SA, Ricketts SA, Incognito L, Veldman-Jones M et al. Dual IGF-I/II-neutralizing antibody MEDI-573 potently inhibits IGF signaling and tumor growth. Cancer Res 2011; 71: 1029–1040.

    CAS  PubMed  Google Scholar 

  30. Liles JS, Arnoletti JP, Kossenkov AV, Mikhaylina A, Frost AR, Kulesza P et al. Targeting ErbB3-mediated stromal-epithelial interactions in pancreatic ductal adenocarcinoma. Br J Cancer 2011; 105: 523–533.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut 2013; 62: 550–560.

    CAS  PubMed  Google Scholar 

  33. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 2004; 18: 1016–1018.

    CAS  PubMed  Google Scholar 

  34. Medico E, Russo M, Picco G, Cancelliere C, Valtorta E, Corti G et al. The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets. Nat Commun 2015; 6: 7002.

    CAS  PubMed  Google Scholar 

  35. Kennedy SG, Wagner AJ, Conzen SD, Jordan J, Bellacosa A, Tsichlis PN et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 1997; 11: 701–713.

    CAS  PubMed  Google Scholar 

  36. Manning BD, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    CAS  PubMed  Google Scholar 

  38. De Wever O, Demetter P, Mareel M, Bracke M . Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123: 2229–2238.

    CAS  PubMed  Google Scholar 

  39. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G . The myofibroblast: one function, multiple origins. Am J Pathol 2007; 170: 1807–1816.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hinz B, Celetta G, Tomasek JJ, Gabbiani G, Chaponnier C . Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Biol Cell 2001; 12: 2730–2741.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G . Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122: 103–111.

    CAS  PubMed  Google Scholar 

  42. Tojo M, Hamashima Y, Hanyu A, Kajimoto T, Saitoh M, Miyazono K et al. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci 2005; 96: 791–800.

    CAS  PubMed  Google Scholar 

  43. Arora PD, Narani N, McCulloch CA . The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol 1999; 154: 871–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL et al. Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 2001; 15: 50–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 2013; 10: e1001453.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Loboda A, Nebozhyn MV, Watters JW, Buser CA, Shaw PM, Huang PS et al. EMT is the dominant program in human colon cancer. BMC Med Genomics 2011; 4: 9.

    PubMed  PubMed Central  Google Scholar 

  47. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 2012; 22: 571–584.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005; 121: 335–348.

    CAS  PubMed  Google Scholar 

  49. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  50. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 2015; 47: 320–329.

    CAS  PubMed  Google Scholar 

  51. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A et al. Stromal contribution to the colorectal cancer transcriptome. Nat Genet 2015; 47: 312–319.

    CAS  PubMed  Google Scholar 

  52. Fukuda I, Hizuka N, Ishikawa Y, Yasumoto K, Murakami Y, Sata A et al. Clinical features of insulin-like growth factor-II producing non-islet-cell tumor hypoglycemia. Growth Horm IGF Res 2006; 16: 211–216.

    CAS  PubMed  Google Scholar 

  53. de Groot JW, Rikhof B, van Doorn J, Bilo HJ, Alleman MA, Honkoop AH et al. Non-islet cell tumour-induced hypoglycaemia: a review of the literature including two new cases. Endocr Relat Cancer 2007; 14: 979–993.

    CAS  PubMed  Google Scholar 

  54. Singh SK, Moretta D, Almaguel F, De Leon M, De Leon DD . Precursor IGF-II (proIGF-II) and mature IGF-II (mIGF-II) induce Bcl-2 And Bcl-X L expression through different signaling pathways in breast cancer cells. Growth Factors 2008; 26: 92–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Engelman JA . Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 2009; 9: 550–562.

    CAS  PubMed  Google Scholar 

  56. Rudisch A, Dewhurst MR, Horga LG, Kramer N, Harrer N, Dong M et al. High EMT signature score of invasive non-small cell lung cancer (NSCLC) cells correlates with NFkappaB driven colony-stimulating factor 2 (CSF2/GM-CSF) secretion by neighboring stromal fibroblasts. PLoS ONE 2015; 10: e0124283.

    PubMed  PubMed Central  Google Scholar 

  57. Hu YP, Patil SB, Panasiewicz M, Li W, Hauser J, Humphrey LE et al. Heterogeneity of receptor function in colon carcinoma cells determined by cross-talk between type I insulin-like growth factor receptor and epidermal growth factor receptor. Cancer Res 2008; 68: 8004–8013.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 2011; 146: 148–163.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, Erler JT et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009; 139: 891–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Darby I, Skalli O, Gabbiani G . Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63: 21–29.

    CAS  PubMed  Google Scholar 

  61. Kobayashi T, Liu X, Wen FQ, Kohyama T, Shen L, Wang XQ et al. Smad3 mediates TGF-beta1-induced collagen gel contraction by human lung fibroblasts. Biochem Biophys Res Commun 2006; 339: 290–295.

    CAS  PubMed  Google Scholar 

  62. Park JH, Richards CH, McMillan DC, Horgan PG, Roxburgh CS . The relationship between tumour stroma percentage, the tumour microenvironment and survival in patients with primary operable colorectal cancer. Ann Oncol 2014; 25: 644–651.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tsujino T, Seshimo I, Yamamoto H, Ngan CY, Ezumi K, Takemasa I et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 2007; 13: 2082–2090.

    CAS  PubMed  Google Scholar 

  64. Raykha C, Crawford J, Gan BS, Fu P, Bach LA, O'Gorman DB . IGF-II and IGFBP-6 regulate cellular contractility and proliferation in Dupuytren's disease. Biochim Biophys Acta 2013; 1832: 1511–1519.

    CAS  PubMed  Google Scholar 

  65. Charbonney E, Speight P, Masszi A, Nakano H, Kapus A . Beta-catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial-myofibroblast transition. Mol Biol Cell 2011; 22: 4472–4485.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Masszi A, Fan L, Rosivall L, McCulloch CA, Rotstein OD, Mucsi I et al. Integrity of cell-cell contacts is a critical regulator of TGF-beta 1-induced epithelial-to-myofibroblast transition: role for beta-catenin. Am J Pathol 2004; 165: 1955–1967.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Small EM . The actin-MRTF-SRF gene regulatory axis and myofibroblast differentiation. J Cardiovasc Transl Res 2012; 5: 794–804.

    PubMed  Google Scholar 

  68. Taya S, Inagaki N, Sengiku H, Makino H, Iwamatsu A, Urakawa I et al. Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol 2001; 155: 809–820.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Albrengues J, Bourget I, Pons C, Butet V, Hofman P, Tartare-Deckert S et al. LIF mediates proinvasive activation of stromal fibroblasts in cancer. Cell Rep 2014; 7: 1664–1678.

    CAS  PubMed  Google Scholar 

  70. Hylander BL, Punt N, Tang H, Hillman J, Vaughan M, Bshara W et al. Origin of the vasculature supporting growth of primary patient tumor xenografts. J Transl Med 2013; 11: 110.

    PubMed  PubMed Central  Google Scholar 

  71. Klein CA . Parallel progression of primary tumours and metastases. Nat Rev Cancer 2009; 9: 302–312.

    CAS  PubMed  Google Scholar 

  72. Pollak M . The insulin receptor/insulin-like growth factor receptor family as a therapeutic target in oncology. Clin Cancer Res 2012; 18: 40–50.

    CAS  PubMed  Google Scholar 

  73. Ulanet DB, Ludwig DL, Kahn CR, Hanahan D . Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proc Natl Acad Sci USA 2010; 107: 10791–10798.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Buck E, Gokhale PC, Koujak S, Brown E, Eyzaguirre A, Tao N et al. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer. Mol Cancer Ther 2010; 9: 2652–2664.

    CAS  PubMed  Google Scholar 

  75. Brouwer-Visser J, Lee J, McCullagh K, Cossio MJ, Wang Y, Huang GS . Insulin-like growth factor 2 silencing restores taxol sensitivity in drug resistant ovarian cancer. PLoS ONE 2014; 9: e100165.

    PubMed  PubMed Central  Google Scholar 

  76. Friedbichler K, Hofmann MH, Kroez M, Ostermann E, Lamche HR, Koessl C et al. Pharmacodynamic and antineoplastic activity of BI 836845, a fully human IGF ligand-neutralizing antibody, and mechanistic rationale for combination with rapamycin. Mol Cancer Ther 2014; 13: 399–409.

    CAS  PubMed  Google Scholar 

  77. Dolznig H, Rupp C, Puri C, Haslinger C, Schweifer N, Wieser E et al. Modeling colon adenocarcinomas in vitro a 3D co-culture system induces cancer-relevant pathways upon tumor cell and stromal fibroblast interaction. Am J Pathol 2011; 179: 487–501.

    PubMed  PubMed Central  Google Scholar 

  78. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP . Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 2003; 31: e15.

    PubMed  PubMed Central  Google Scholar 

  79. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    PubMed  Google Scholar 

  80. Bolstad BM, Irizarry RA, Astrand M, Speed TP . A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185–193.

    CAS  PubMed  Google Scholar 

  81. Dai M, Wang P, Boyd AD, Kostov G, Athey B, Jones EG et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 2005; 33: e175.

    PubMed  PubMed Central  Google Scholar 

  82. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47.

    PubMed  PubMed Central  Google Scholar 

  83. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Rosner M, Siegel N, Fuchs C, Slabina N, Dolznig H, Hengstschlager M . Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 2010; 5: 1081–1095.

    CAS  PubMed  Google Scholar 

  85. Charan J, Kantharia ND . How to calculate sample size in animal studies? J Pharmacol Pharmacother 2013; 4: 303–306.

    PubMed  PubMed Central  Google Scholar 

  86. Goswami CP, Nakshatri H . PROGgeneV2: enhancements on the existing database. BMC Cancer 2014; 14: 970.

    PubMed  PubMed Central  Google Scholar 

  87. Jorissen RN, Gibbs P, Christie M, Prakash S, Lipton L, Desai J et al. Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clin Cancer Res 2009; 15: 7642–7651.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Margit Schmeidl for expert technical assistance. We would like to thank Wolfgang Mikulits and Philipp Wittmann for providing TGFβ reagents and technical input.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Unger or H Dolznig.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unger, C., Kramer, N., Unterleuthner, D. et al. Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms. Oncogene 36, 5341–5355 (2017). https://doi.org/10.1038/onc.2017.116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.116

This article is cited by

Search

Quick links