Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24

Abstract

Loss of HOXA5 expression occurs frequently in breast cancer and correlates with higher pathological grade and poorer disease outcome. However, how HOX proteins drive differentiation in mammalian cells is poorly understood. In this paper, we investigated cellular and molecular consequences of loss of HOXA5 in breast cancer, and the role played by retinoic acid in HOXA5 function. Analysis of global gene expression data from HOXA5-depleted MCF10A breast epithelial cells, followed by validation, pointed to a role for HOXA5 in maintaining several molecular traits typical of the epithelial lineage such as cell–cell adhesion, tight junctions and markers of differentiation. Depleting HOXA5 in immortalized MCF10A or transformed MCF10A-Kras cells reduced their CD24+/CD44lo population, enhanced self-renewal capacity and reduced expression of E-cadherin (CDH1) and CD24. In the case of MCF10A-Kras, HOXA5 loss increased branching and protrusive morphology in Matrigel, all features suggestive of epithelial to basal transition. Further, orthotopically implanted xenografts of MCF10A-Kras-scr grew as well-differentiated pseudo-luminal carcinomas, while MCF10A-Kras-shHOXA5 cells formed aggressive, poorly differentiated carcinomas. Conversely, ectopic expression of HOXA5 in aggressive SUM149 or SUM159 breast cancer cells reversed the cellular and molecular alterations observed in the HOXA5-depleted cells. Retinoic acid is a known upstream regulator of HOXA5 expression. HOXA5 depletion in MCF10A cells engineered to express doxycycline-induced shHOXA5 slowed transition of cells from a less differentiated CD24/CD44+ to the more differentiated CD24+/CD44+ state. This transition was promoted by retinal treatment, which upregulated endogenous HOXA5 expression and caused re-expression of occludin and claudin-7 (CLDN7). Expression of CDH1 and CD24 was transcriptionally upregulated by direct binding of HOXA5 to their promoter sequences as demonstrated by luciferase and ChIP analyses. Thus, loss of HOXA5 in mammary cells leads to loss of epithelial traits, an increase in stemness and cell plasticity, and the acquisition of more aggressive phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pratt MA, Langston AW, Gudas LJ, McBurney MW . Retinoic acid fails to induce expression of Hox genes in differentiation-defective murine embryonal carcinoma cells carrying a mutant gene for alpha retinoic acid receptor. Differentiation 1993; 53: 105–113.

    Article  CAS  PubMed  Google Scholar 

  2. Kondo T, Takahashi N, Muramatsu M . The regulation of the murine Hox-2.5 gene expression during cell differentiation. Nucleic Acids Res 1992; 20: 5729–5735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zwartkruis F, Kruyt F, van der Saag PT, Meijlink F . Induction of HOX-2 genes in P19 embryocarcinoma cells is dependent on retinoic acid receptor alpha. Exp Cell Res 1993; 205: 422–425.

    Article  CAS  PubMed  Google Scholar 

  4. Marshall H, Morrison A, Studer M, Popperl H, Krumlauf R . Retinoids and Hox genes. FASEB J 1996; 10: 969–978.

    Article  CAS  PubMed  Google Scholar 

  5. Dubrulle J, McGrew MJ, Pourquie O . FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106: 219–232.

    Article  CAS  PubMed  Google Scholar 

  6. Alexander T, Nolte C, Krumlauf R . Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2009; 25: 431–456.

    Article  CAS  PubMed  Google Scholar 

  7. Shah N, Sukumar S . The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010; 10: 361–371.

    Article  CAS  PubMed  Google Scholar 

  8. Yan W, Chen Y, Yao Y, Zhang H, Wang T . Increased invasion and tumorigenicity capacity of CD44+/CD24- breast cancer MCF7 cells in vitro and in nude mice. Cancer Cell Int 2013; 13: 13–62.

    Article  Google Scholar 

  9. Taylor HS, Vanden Heuvel GB, Igarashi P . A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol Reprod 1997; 57: 1338–1345.

    Article  CAS  PubMed  Google Scholar 

  10. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405: 974–978.

    Article  CAS  PubMed  Google Scholar 

  11. Chen H, Chung S, Sukumar S . HOXA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol Cell Biol 2004; 24: 924–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA 2006; 103: 11707–11712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Zhang H, Lee J, Liang X, Wu X, Zhu T et al. HOXA5 acts directly downstream of retinoic acid receptor beta and contributes to retinoic acid-induced apoptosis and growth inhibition. Cancer Res 2007; 67: 8007–8013.

    Article  CAS  PubMed  Google Scholar 

  14. Laursen KB, Mongan NP, Zhuang Y, Ng MM, Benoit YD, Gudas LJ . Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene. Nucleic Acids Res 2013; 41: 6430–6443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS . Stem cells in normal breast development and breast cancer. Cell Prolif 2003; 36: 59–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133: 704–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Radisky DC, LaBarge MA . Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell 2008; 2: 511–512.

    Article  CAS  PubMed  Google Scholar 

  18. May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA . Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 2011; 13: 202.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Klopp AH, Lacerda L, Gupta A, Debeb BG, Solley T, Li L et al. Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. PLoS One 2010; 5: e12180.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Honeth G, Bendahl PO, Ringner M, Saal LH, Gruvberger-Saal SK, Lovgren K et al. The CD44+/CD24- phenotype is enriched in basal-like breast tumors. Breast Cancer Res 2008; 10: R53.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sheridan C, Kishimoto H, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 2006; 8: R59.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kay R, Rosten PM, Humphries RK . CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol 1991; 147: 1412–1416.

    CAS  PubMed  Google Scholar 

  23. Petkova N, Hennenlotter J, Sobiesiak M, Todenhofer T, Scharpf M, Stenzl A et al. Surface CD24 distinguishes between low differentiated and transit-amplifying cells in the basal layer of human prostate. Prostate 2013; 73: 1576–1590.

    Article  CAS  PubMed  Google Scholar 

  24. Sleeman KE, Kendrick H, Ashworth A, Isacke CM, Smalley MJ . CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells. Breast Cancer Res 2006; 8: R7.

    Article  PubMed  Google Scholar 

  25. Thomas S, Harding MA, Smith SC, Overdevest JB, Nitz MD, Frierson HF et al. CD24 is an effector of HIF-1-driven primary tumor growth and metastasis. Cancer Res 2012; 72: 5600–5612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vesuna F, Lisok A, Kimble B, Raman V . Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia 2009; 11: 1318–1328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ghiaur G, Yegnasubramanian S, Perkins B, Gucwa JL, Gerber JM, Jones RJ . Regulation of human hematopoietic stem cell self-renewal by the microenvironment's control of retinoic acid signaling. Proc Natl Acad Sci USA 2013; 110: 16121–16126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Henderson KD, Andrew DJ . Regulation and function of Scr, exd, and hth in the Drosophila salivary gland. Dev Biol 2000; 217: 362–374.

    Article  CAS  PubMed  Google Scholar 

  29. Raman V, Tamori A, Vali M, Zeller K, Korz D, Sukumar S . HOXA5 regulates expression of the progesterone receptor. J Biol Chem 2000; 275: 26551–26555.

    Article  CAS  PubMed  Google Scholar 

  30. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ribeiro AS, Paredes J . P-cadherin linking breast cancer stem cells and invasion: a promising marker to identify an "intermediate/metastable" EMT state. Front Oncol 2015; 4: 371.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang H, Meyer CA, Fei T, Wang G, Zhang F, Liu XS . A systematic approach identifies FOXA1 as a key factor in the loss of epithelial traits during the epithelial-to-mesenchymal transition in lung cancer. BMC Genomics 2013; 14: 680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F et al. Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 2011; 71: 1292–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q . FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res 2011; 71: 3076–3086.

    Article  CAS  PubMed  Google Scholar 

  35. Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2007; 1: 84–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 1253–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Strickland S, Mahdavi V . The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 1978; 15: 393–403.

    Article  CAS  PubMed  Google Scholar 

  38. Wang YA, Shen K, Wang Y, Brooks SC . Retinoic acid signaling is required for proper morphogenesis of mammary gland. Dev Dyn 2005; 234: 892–899.

    Article  CAS  PubMed  Google Scholar 

  39. Aubin J, Lemieux M, Tremblay M, Berard J, Jeannotte L . Early postnatal lethality in Hoxa-5 mutant mice is attributable to respiratory tract defects. Dev Biol 1997; 192: 432–445.

    Article  CAS  PubMed  Google Scholar 

  40. Tokes AM, Kulka J, Paku S, Szik A, Paska C, Novak PK et al. Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 2005; 7: R296–R305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22: 2021–2033.

    Article  CAS  PubMed  Google Scholar 

  42. Swisshelm K, Machl A, Planitzer S, Robertson R, Kubbies M, Hosier S . SEMP1, a senescence-associated cDNA isolated from human mammary epithelial cells, is a member of an epithelial membrane protein superfamily. Gene 1999; 226: 285–295.

    Article  CAS  PubMed  Google Scholar 

  43. Kramer F, White K, Kubbies M, Swisshelm K, Weber BH . Genomic organization of claudin-1 and its assessment in hereditary and sporadic breast cancer. Hum Genet 2000; 107: 249–256.

    Article  CAS  PubMed  Google Scholar 

  44. Martin TA, Mansel RE, Jiang WG . Loss of occludin leads to the progression of human breast cancer. Int J Mol Med 2010; 26: 723–734.

    Article  CAS  PubMed  Google Scholar 

  45. Keller PJ, Lin AF, Arendt LM, Klebba I, Jones AD, Rudnick JA et al. Mapping the cellular and molecular heterogeneity of normal and malignant breast tissues and cultured cell lines. Breast Cancer Res 2010; 12: R87.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 2013; 152: 25–38.

    Article  CAS  PubMed  Google Scholar 

  47. Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 2009; 8: 3297–3302.

    Article  CAS  PubMed  Google Scholar 

  48. Ansari KI, Hussain I, Kasiri S, Mandal SS . HOXC10 is overexpressed in breast cancer and transcriptionally regulated by estrogen via involvement of histone methylases MLL3 and MLL4. J Mol Endocrinol 2012; 48: 61–75.

    Article  CAS  PubMed  Google Scholar 

  49. Sun R, Liu Y, Li SY, Shen S, Du XJ, Xu CF et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 2015; 37: 405–414.

    Article  CAS  PubMed  Google Scholar 

  50. Arab HH, Wani G, Ray A, Shah ZI, Zhu Q, Wani AA . Dissociation of CAK from core TFIIH reveals a functional link between XP-G/CS and the TFIIH disassembly state. PLoS One 2010; 5: e11007.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jin K, Park S, Teo WW, Korangath P, Cho SS, Yoshida T et al. HOXB7 is an ERalpha cofactor in the activation of HER2 and multiple ER target genes leading to endocrine resistance. Cancer Discov 2015; 5: 944–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  PubMed  Google Scholar 

  53. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004; 101: 4966–4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jin K, Kong X, Shah T, Penet MF, Wildes F, Sgroi DC et al. The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proc Natl Acad Sci USA 2012; 109: 2736–2741.

    Article  CAS  PubMed  Google Scholar 

  56. Thiaville MM, Stoeck A, Chen L, Wu RC, Magnani L, Oidtman J et al. Identification of PBX1 target genes in cancer cells by global mapping of PBX1 binding sites. PLoS One 2012; 7: e36054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Akhilesh Pandey and Edward Gabrielson for guidance; Alan Rein for critically reviewing the manuscript; and help from members of the Sukumar lab. This work was supported by the Susan G. Komen Foundation Leadership Grant # SAC110050, the Department of Defense Center of Excellence-W81XWH-04-1-0595 and the SKCCC Core Grant P30 CA006973 to SS and The AVON Research Foundation Center of Excellence Grant to SS/WWT. AJE is supported by awards from the American Cancer Society (RSG-12-141-01-CSM) and from the Breast Cancer Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Sukumar.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, W., Merino, V., Cho, S. et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene 35, 5539–5551 (2016). https://doi.org/10.1038/onc.2016.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.95

This article is cited by

Search

Quick links