Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

FOXC1 is involved in ERα silencing by counteracting GATA3 binding and is implicated in endocrine resistance

Subjects

Abstract

Estrogen receptor-α (ERα) mediates the essential biological function of estrogen in breast development and tumorigenesis. Multiple mechanisms, including pioneer factors, coregulators and epigenetic modifications have been identified as regulators of ERα signaling in breast cancer. However, previous studies of ERα regulation have focused on luminal and HER2-positive subtypes rather than basal-like breast cancer (BLBC), in which ERα is underexpressed. In addition, mechanisms that account for the decrease or loss of ER expression in recurrent tumors after endocrine therapy remain elusive. Here, we demonstrate a novel FOXC1-driven mechanism that suppresses ERα expression in breast cancer. We find that FOXC1 competes with GATA-binding protein 3 (GATA3) for the same binding regions in the cis-regulatory elements upstream of the ERα gene and thereby downregulates ERα expression and consequently its transcriptional activity. The forkhead domain of FOXC1 is essential for the competition with GATA3 for DNA binding. Counteracting the action of GATA3 at the ERα promoter region, overexpression of FOXC1 hinders recruitment of RNA polymerase II and increases histone H3K9 trimethylation at ERα promoters. Importantly, ectopic FOXC1 expression in luminal breast cancer cells reduces sensitivity to estrogen and tamoxifen. Furthermore, in breast cancer patients with ER-positive primary tumors who received adjuvant tamoxifen treatment, FOXC1 expression is associated with decreased or undetectable ER expression in recurrent tumors. Our findings highlight a clinically relevant mechanism that contributes to the low or absent ERα expression in BLBC. This study suggests a new paradigm to study ERα regulation during breast cancer progression and indicates a role of FOXC1 in the modulation of cellular response to endocrine treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    Article  CAS  Google Scholar 

  2. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747–752.

    Article  CAS  Google Scholar 

  3. Sparano JA, Fazzari M, Kenny PA . Clinical application of gene expression profiling in breast cancer. Surg Oncol Clin North Am 2010; 19: 581–606.

    Article  Google Scholar 

  4. Osborne CK . Steroid hormone receptors in breast cancer management. Breast Cancer Res Treat 1998; 51: 227–238.

    Article  CAS  Google Scholar 

  5. Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V et al. Basal-like and triple-negative breast cancers: a critical review with an emphasis on the implications for pathologists and oncologists. Mod Pathol 2011; 24: 157–167.

    Article  Google Scholar 

  6. Hurtado A, Holmes KA, Ross-Innes CS, Schmidt D, Carroll JS . FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet 2011; 43: 27–33.

    Article  CAS  Google Scholar 

  7. Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . Positive cross-regulatory loop ties GATA-3 to estrogen receptor alpha expression in breast cancer. Cancer Res 2007; 67: 6477–6483.

    Article  CAS  Google Scholar 

  8. Manavathi B, Samanthapudi VS, Gajulapalli VN . Estrogen receptor coregulators and pioneer factors: the orchestrators of mammary gland cell fate and development. Front Cell Dev Biol 2014; 2: 34.

    Article  Google Scholar 

  9. Yoshida T, Eguchi H, Nakachi K, Tanimoto K, Higashi Y, Suemasu K et al. Distinct mechanisms of loss of estrogen receptor alpha gene expression in human breast cancer: methylation of the gene and alteration of trans-acting factors. Carcinogenesis 2000; 21: 2193–2201.

    Article  CAS  Google Scholar 

  10. Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG et al. BRCA1 regulates acetylation and ubiquitination of estrogen receptor-alpha. Mol Endocrinol 2010; 24: 76–90.

    Article  CAS  Google Scholar 

  11. Kuukasjarvi T, Kononen J, Helin H, Holli K, Isola J . Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 1996; 14: 2584–2589.

    Article  CAS  Google Scholar 

  12. Kume T, Deng KY, Winfrey V, Gould DB, Walter MA, Hogan BL . The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998; 93: 985–996.

    Article  CAS  Google Scholar 

  13. Jensen TW, Ray T, Wang J, Li X, Naritoku WY, Han B et al. Diagnosis of basal-like breast cancer using a FOXC1-based Assay. J Natl Cancer Inst 2015; 107: pii:djv148.

    Article  Google Scholar 

  14. Ray PS, Wang J, Qu Y, Sim MS, Shamonki J, Bagaria SP et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res 2010; 70: 3870–3876.

    Article  CAS  Google Scholar 

  15. Xia L, Huang W, Tian D, Zhu H, Qi X, Chen Z et al. Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology 2013; 57: 610–624.

    Article  CAS  Google Scholar 

  16. Xu Y, Shao QS, Yao HB, Jin Y, Ma YY, Jia LH . Overexpression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology 2014; 64: 963–970.

    Article  Google Scholar 

  17. Wei LX, Zhou RS, Xu HF, Wang JY, Yuan MH . High expression of FOXC1 is associated with poor clinical outcome in non-small cell lung cancer patients. Tumour Biol 2013; 34: 941–946.

    Article  CAS  Google Scholar 

  18. Schultz JR, Petz LN, Nardulli AM . Estrogen receptor alpha and Sp1 regulate progesterone receptor gene expression. Mol Cell Endocrinol 2003; 201: 165–175.

    Article  CAS  Google Scholar 

  19. Mohammed H, D'Santos C, Serandour AA, Ali HR, Brown GD, Atkins A et al. Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Rep 2013; 3: 342–349.

    Article  CAS  Google Scholar 

  20. Sengupta S, Sharma CG, Jordan VC . Estrogen regulation of X-box binding protein-1 and its role in estrogen induced growth of breast and endometrial cancer cells. Horm Mol Biol Clin Investig 2010; 2: 235–243.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R et al. Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev 2010; 24: 171–182.

    Article  CAS  Google Scholar 

  22. Caizzi L, Ferrero G, Cutrupi S, Cordero F, Ballare C, Miano V et al. Genome-wide activity of unliganded estrogen receptor-alpha in breast cancer cells. Proc Natl Acad Sci USA 2014; 111: 4892–4897.

    Article  CAS  Google Scholar 

  23. Prest SJ, May FE, Westley BR . The estrogen-regulated protein, TFF1, stimulates migration of human breast cancer cells. FASEB J 2002; 16: 592–594.

    Article  CAS  Google Scholar 

  24. Augereau P, Badia E, Fuentes M, Rabenoelina F, Corniou M, Derocq D et al. Transcriptional regulation of the human NRIP1/RIP140 gene by estrogen is modulated by dioxin signalling. Mol Pharmacol 2006; 69: 1338–1346.

    Article  CAS  Google Scholar 

  25. Han B, Qu Y, Jin Y, Yu Y, Deng N, Wawrowsky K et al. FOXC1 activates smoothened-independent hedgehog signaling in basal-like breast cancer. Cell Rep 2015; 13: 1046–1058.

    Article  CAS  Google Scholar 

  26. Madureira PA, Varshochi R, Constantinidou D, Francis RE, Coombes RC, Yao KM et al. The Forkhead box M1 protein regulates the transcription of the estrogen receptor alpha in breast cancer cells. J Biol Chem 2006; 281: 25167–25176.

    Article  CAS  Google Scholar 

  27. Guo S, Sonenshein GE . Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol Cell Biol 2004; 24: 8681–8690.

    Article  CAS  Google Scholar 

  28. Magnani L, Ballantyne EB, Zhang X, Lupien M . PBX1 genomic pioneer function drives ERalpha signaling underlying progression in breast cancer. PLoS Genet 2011; 7: e1002368.

    Article  CAS  Google Scholar 

  29. Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY et al. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 1997; 277: 965–968.

    Article  CAS  Google Scholar 

  30. Pugh BF, Tjian R . Mechanism of transcriptional activation by Sp1: evidence for coactivators. Cell 1990; 61: 1187–1197.

    Article  CAS  Google Scholar 

  31. Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P . Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J 1994; 13: 5002–5012.

    Article  CAS  Google Scholar 

  32. Kos M, Reid G, Denger S, Gannon F . Minireview: genomic organization of the human ERalpha gene promoter region. Mol Endocrinol 2001; 15: 2057–2063.

    CAS  Google Scholar 

  33. Marconett CN, Sundar SN, Poindexter KM, Stueve TR, Bjeldanes LF, Firestone GL . Indole-3-carbinol triggers aryl hydrocarbon receptor-dependent estrogen receptor (ER)alpha protein degradation in breast cancer cells disrupting an ERalpha-GATA3 transcriptional cross-regulatory loop. Mol Biol Cell 2010; 21: 1166–1177.

    Article  CAS  Google Scholar 

  34. Cimino-Mathews A, Subhawong AP, Illei PB, Sharma R, Halushka MK, Vang R et al. GATA3 expression in breast carcinoma: utility in triple-negative, sarcomatoid, and metastatic carcinomas. Hum Pathol 2013; 44: 1341–1349.

    Article  CAS  Google Scholar 

  35. Bartkuhn M, Renkawitz R . Long range chromatin interactions involved in gene regulation. Biochim Biophys Acta 2008; 1783: 2161–2166.

    Article  CAS  Google Scholar 

  36. Bulger M, Groudine M . Enhancers: the abundance and function of regulatory sequences beyond promoters. Dev Biol 2010; 339: 250–257.

    Article  CAS  Google Scholar 

  37. Gaughan L, Stockley J, Coffey K, O'Neill D, Jones DL, Wade M et al. KDM4B is a master regulator of the estrogen receptor signalling cascade. Nucleic Acids Res 2013; 41: 6892–6904.

    Article  CAS  Google Scholar 

  38. Shenker NS, Flower KJ, Wilhelm-Benartzi CS, Dai W, Bell E, Gore E et al. Transcriptional implications of intragenic DNA methylation in the oestrogen receptor alpha gene in breast cancer cells and tissues. BMC Cancer 2015; 15: 337.

    Article  Google Scholar 

  39. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O'Malley BW . Proteasome-dependent degradation of the human estrogen receptor. Proce Natl Acad Sci USA 1999; 96: 1858–1862.

    Article  CAS  Google Scholar 

  40. Berry FB, Saleem RA, Walter MA . FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem 2002; 277: 10292–10297.

    Article  CAS  Google Scholar 

  41. Saleem RA, Banerjee-Basu S, Murphy TC, Baxevanis A, Walter MA . Essential structural and functional determinants within the forkhead domain of FOXC1. Nucleic Acids Res 2004; 32: 4182–4193.

    Article  CAS  Google Scholar 

  42. Obrero M, Yu DV, Shapiro DJ . Estrogen receptor-dependent and estrogen receptor-independent pathways for tamoxifen and 4-hydroxytamoxifen-induced programmed cell death. J Biol Chem 2002; 277: 45695–45703.

    Article  CAS  Google Scholar 

  43. Becker M, Sommer A, Kratzschmar JR, Seidel H, Pohlenz HD, Fichtner I . Distinct gene expression patterns in a tamoxifen-sensitive human mammary carcinoma xenograft and its tamoxifen-resistant subline MaCa 3366/TAM. Mol Cancer Ther 2005; 4: 151–168.

    CAS  PubMed  Google Scholar 

  44. Oyama M, Nagashima T, Suzuki T, Kozuka-Hata H, Yumoto N, Shiraishi Y et al. Integrated quantitative analysis of the phosphoproteome and transcriptome in tamoxifen-resistant breast cancer. J Biol Chem 2011; 286: 818–829.

    Article  CAS  Google Scholar 

  45. Saleem RA, Banerjee-Basu S, Berry FB, Baxevanis AD, Walter MA . Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1. Hum Mol Genet 2003; 12: 2993–3005.

    Article  CAS  Google Scholar 

  46. Theodorou V, Stark R, Menon S, Carroll JS . GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility. Genome Res 2013; 23: 12–22.

    Article  CAS  Google Scholar 

  47. Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD et al. FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development 2010; 137: 2045–2054.

    Article  CAS  Google Scholar 

  48. Berry FB, Skarie JM, Mirzayans F, Fortin Y, Hudson TJ, Raymond V et al. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet 2008; 17: 490–505.

    Article  CAS  Google Scholar 

  49. Ye Q, Holowatyj A, Wu J, Liu H, Zhang L, Suzuki T et al. Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer. Am J Cancer Res 2015; 5: 1519–1530.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Julia Gee for discussion about antiestrogen experiments. This work was supported by the National Institutes of Health (CA151610), the Avon Foundation for Women (02-2014-063) and David Salomon Translational Breast Cancer Research Fund, and Eleanor and Glenn Padnick Discovery Fund in Cellular Therapy to Xiaojiang Cui, the Fashion Footwear Charitable Foundation of New York, Inc., associates for Breast and Prostate Cancer Studies, the Margie and Robert E. Petersen Foundation, and the Linda and Jim Lippman Research Fund to Armando Giuliano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Cui.

Ethics declarations

Competing interests

Xiaojiang Cui is a named inventor for patent applications regarding the role of FOXC1 in cancer. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu-Rice, Y., Jin, Y., Han, B. et al. FOXC1 is involved in ERα silencing by counteracting GATA3 binding and is implicated in endocrine resistance. Oncogene 35, 5400–5411 (2016). https://doi.org/10.1038/onc.2016.78

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.78

This article is cited by

Search

Quick links