Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Opposing post-translational modifications regulate Cep76 function to suppress centriole amplification

Abstract

Centrioles are critical for many cellular processes including cell division and cilia assembly. The number of centrioles within a cell is under strict control, and deregulation of centriole copy number is a hallmark of cancer. The molecular mechanisms that halt centriole amplification have not been fully elucidated. Here, we found that centrosomal protein of 76 kDa (Cep76), previously shown to restrain centriole amplification, interacts with cyclin-dependent kinase 2 (CDK2) and is a bona fide substrate of this kinase. Cep76 is preferentially phosphorylated by cyclin A/CDK2 at a single site S83, and this event is crucial to suppress centriole amplification in S phase. A novel Cep76 mutation S83C identified in a cancer patient fails to prevent centriole amplification. Mechanistically, Cep76 phosphorylation inhibits activation of polo-like kinase 1 (Plk1), thereby blocking premature centriole disengagement and subsequent amplification. Cep76 can also be acetylated, and enforced acetylation at K279 dampens the protein’s ability to inhibit amplification and precludes S83 phosphorylation. Acetylation of Cep76 normally occurs in G2 phase and correlates with loss of protein function. Our data suggest that temporal changes in post-translational modifications of Cep76 during the cell cycle regulate its capacity to suppress centriole amplification, and its deregulation may contribute to malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bornens M . The centrosome in cells and organisms. Science 2012; 335: 422–426.

    Article  CAS  Google Scholar 

  2. Nigg EA, Stearns T . The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011; 13: 1154–1160.

    Article  CAS  Google Scholar 

  3. Nigg EA, Raff JW . Centrioles, centrosomes, and cilia in health and disease. Cell 2009; 139: 663–678.

    Article  CAS  Google Scholar 

  4. Lingle WL, Lutz WH, Ingle JN, Maihle NJ, Salisbury JL . Centrosome hypertrophy in human breast tumors: implications for genomic stability and cell polarity. Proc Natl Acad Sci USA 1998; 95: 2950–2955.

    Article  CAS  Google Scholar 

  5. Chan JY . A clinical overview of centrosome amplification in human cancers. Int J Biol Sci 2011; 7: 1122–1144.

    Article  CAS  Google Scholar 

  6. Pihan GA, Purohit A, Wallace J, Knecht H, Woda B, Quesenberry P et al. Centrosome defects and genetic instability in malignant tumors. Cancer Res 1998; 58: 3974–3985.

    CAS  PubMed  Google Scholar 

  7. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S et al. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci USA 2000; 97: 10002–10007.

    Article  CAS  Google Scholar 

  8. Lingle WL, Barrett SL, Negron VC, D'Assoro AB, Boeneman K, Liu W et al. Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 2002; 99: 1978–1983.

    Article  CAS  Google Scholar 

  9. Pihan GA, Wallace J, Zhou Y, Doxsey SJ . Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. Cancer Res 2003; 63: 1398–1404.

    CAS  PubMed  Google Scholar 

  10. Ganem NJ, Godinho SA, Pellman D . A mechanism linking extra centrosomes to chromosomal instability. Nature 2009; 460: 278–282.

    Article  CAS  Google Scholar 

  11. Godinho SA, Picone R, Burute M, Dagher R, Su Y, Leung CT et al. Oncogene-like induction of cellular invasion from centrosome amplification. Nature 2014; 510: 167–171.

    Article  CAS  Google Scholar 

  12. Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P . Cdk2 knockout mice are viable. Curr Biol 2003; 13: 1775–1785.

    Article  CAS  Google Scholar 

  13. Ortega S, Prieto I, Odajima J, Martin A, Dubus P, Sotillo R et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 2003; 35: 25–31.

    Article  CAS  Google Scholar 

  14. Santamaria D, Barriere C, Cerqueira A, Hunt S, Tardy C, Newton K et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 2007; 448: 811–815.

    Article  CAS  Google Scholar 

  15. Merrick KA, Wohlbold L, Zhang C, Allen JJ, Horiuchi D, Huskey NE et al. Switching Cdk2 on or off with small molecules to reveal requirements in human cell proliferation. Mol Cell 2011; 42: 624–636.

    Article  CAS  Google Scholar 

  16. Hinchcliffe EH, Li C, Thompson EA, Maller JL, Sluder G . Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 1999; 283: 851–854.

    Article  CAS  Google Scholar 

  17. Lacey KR, Jackson PK, Stearns T . Cyclin-dependent kinase control of centrosome duplication. Proc Natl Acad Sci USA 1999; 96: 2817–2822.

    Article  CAS  Google Scholar 

  18. Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA . Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nat Cell Biol 1999; 1: 88–93.

    Article  CAS  Google Scholar 

  19. Matsumoto Y, Hayashi K, Nishida E . Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr Biol 1999; 9: 429–432.

    Article  CAS  Google Scholar 

  20. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian AG, Chan PK et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000; 103: 127–140.

    Article  CAS  Google Scholar 

  21. Fisk HA, Winey M . The mouse Mps1p-like kinase regulates centrosome duplication. Cell 2001; 106: 95–104.

    Article  CAS  Google Scholar 

  22. Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD . CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 2002; 3: 339–350.

    Article  CAS  Google Scholar 

  23. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA . The polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 2005; 7: 1140–1146.

    Article  CAS  Google Scholar 

  24. Korzeniewski N, Zheng L, Cuevas R, Parry J, Chatterjee P, Anderton B et al. Cullin 1 functions as a centrosomal suppressor of centriole multiplication by regulating polo-like kinase 4 protein levels. Cancer Res 2009; 69: 6668–6675.

    Article  CAS  Google Scholar 

  25. Duensing A, Liu Y, Tseng M, Malumbres M, Barbacid M, Duensing S . Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 2006; 25: 2943–2949.

    Article  CAS  Google Scholar 

  26. Adon AM, Zeng X, Harrison MK, Sannem S, Kiyokawa H, Kaldis P et al. Cdk2 and Cdk4 regulate the centrosome cycle and are critical mediators of centrosome amplification in p53-null cells. Mol Cell Biol 2010; 30: 694–710.

    Article  CAS  Google Scholar 

  27. Errico A, Deshmukh K, Tanaka Y, Pozniakovsky A, Hunt T . Identification of substrates for cyclin dependent kinases. Adv Enzyme Regul 2010; 50: 375–399.

    Article  Google Scholar 

  28. Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA, Mann M . Proteomic characterization of the human centrosome by protein correlation profiling. Nature 2003; 426: 570–574.

    Article  CAS  Google Scholar 

  29. Tsang WY, Spektor A, Vijayakumar S, Bista BR, Li J, Sanchez I et al. Cep76, a centrosomal protein that specifically restrains centriole reduplication. Dev Cell 2009; 16: 649–660.

    Article  CAS  Google Scholar 

  30. Balczon R, Bao L, Zimmer WE, Brown K, Zinkowski RP, Brinkley BR . Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J Cell Biol 1995; 130: 105–115.

    Article  CAS  Google Scholar 

  31. Rosenblatt J, Gu Y, Morgan DO . Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc Natl Acad Sci USA 1992; 89: 2824–2828.

    Article  CAS  Google Scholar 

  32. Harper JW, Adams PD . Cyclin-dependent kinases. Chem Rev 2001; 101: 2511–2526.

    Article  CAS  Google Scholar 

  33. Malumbres M . Cyclin-dependent kinases. Genome Biol 2014; 15: 122.

    Article  Google Scholar 

  34. Nigg EA . The substrates of the cdc2 kinase. Semin Cell Biol 1991; 2: 261–270.

    CAS  PubMed  Google Scholar 

  35. Moreno S, Nurse P . Substrates for p34cdc2: in vivo veritas? Cell 1990; 61: 549–551.

    Article  CAS  Google Scholar 

  36. Nigg EA . Cellular substrates of p34(cdc2) and its companion cyclin-dependent kinases. Trends Cell Biol 1993; 3: 296–301.

    Article  CAS  Google Scholar 

  37. Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM, Kaelin WG Jr . Identification of a cyclin-cdk2 recognition motif present in substrates and p21-like cyclin-dependent kinase inhibitors. Mol Cell Biol 1996; 16: 6623–6633.

    Article  CAS  Google Scholar 

  38. Chen J, Saha P, Kornbluth S, Dynlacht BD, Dutta A . Cyclin-binding motifs are essential for the function of p21CIP1. Mol Cell Biol 1996; 16: 4673–4682.

    Article  CAS  Google Scholar 

  39. Zhu L, Harlow E, Dynlacht BD . p107 uses a p21CIP1-related domain to bind cyclin/cdk2 and regulate interactions with E2F. Genes Dev 1995; 9: 1740–1752.

    Article  CAS  Google Scholar 

  40. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE . Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev 1997; 11: 1464–1478.

    Article  CAS  Google Scholar 

  41. Tsang WY, Wang L, Chen Z, Sanchez I, Dynlacht BD . SCAPER, a novel cyclin A-interacting protein that regulates cell cycle progression. J Cell Biol 2007; 178: 621–633.

    Article  CAS  Google Scholar 

  42. Tsang WY, Dynlacht BD . Double identity of SCAPER: a substrate and regulator of cyclin A/Cdk2. Cell Cycle 2008; 7: 702–705.

    Article  CAS  Google Scholar 

  43. Pascreau G, Eckerdt F, Churchill ME, Maller JL . Discovery of a distinct domain in cyclin A sufficient for centrosomal localization independently of Cdk binding. Proc Natl Acad Sci USA 2010; 107: 2932–2937.

    Article  CAS  Google Scholar 

  44. Pagano M, Pepperkok R, Verde F, Ansorge W, Draetta G . Cyclin A is required at two points in the human cell cycle. EMBO J 1992; 11: 961–971.

    Article  CAS  Google Scholar 

  45. De Boer L, Oakes V, Beamish H, Giles N, Stevens F, Somodevilla-Torres M et al. Cyclin A/cdk2 coordinates centrosomal and nuclear mitotic events. Oncogene 2008; 27: 4261–4268.

    Article  CAS  Google Scholar 

  46. Nishimura T, Takahashi M, Kim HS, Mukai H, Ono Y . Centrosome-targeting region of CG-NAP causes centrosome amplification by recruiting cyclin E-cdk2 complex. Genes Cells 2005; 10: 75–86.

    Article  CAS  Google Scholar 

  47. Tsou MF, Stearns T . Mechanism limiting centrosome duplication to once per cell cycle. Nature 2006; 442: 947–951.

    Article  CAS  Google Scholar 

  48. Loncarek J, Hergert P, Khodjakov A . Centriole reduplication during prolonged interphase requires procentriole maturation governed by Plk1. Curr Biol 2010; 20: 1277–1282.

    Article  CAS  Google Scholar 

  49. Yang XJ, Seto E . Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell 2008; 31: 449–461.

    Article  CAS  Google Scholar 

  50. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010; 327: 1000–1004.

    Article  CAS  Google Scholar 

  51. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA 2006; 103: 10660–10665.

    Article  CAS  Google Scholar 

  52. Douthwright S, Sluder G . Link between DNA damage and centriole disengagement/reduplication in untransformed human cells. J Cell Physiol 2014; 229: 1427–1436.

    Article  CAS  Google Scholar 

  53. Wu J, Cho HP, Rhee DB, Johnson DK, Dunlap J, Liu Y et al. Cdc14B depletion leads to centriole amplification, and its overexpression prevents unscheduled centriole duplication. J Cell Biol 2008; 181: 475–483.

    Article  CAS  Google Scholar 

  54. Hemerly AS, Prasanth SG, Siddiqui K, Stillman B . Orc1 controls centriole and centrosome copy number in human cells. Science 2009; 323: 789–793.

    Article  CAS  Google Scholar 

  55. Ferguson RL, Maller JL . Cyclin E-dependent localization of MCM5 regulates centrosome duplication. J Cell Sci 2008; 121: 3224–3232.

    Article  CAS  Google Scholar 

  56. Ferguson RL, Pascreau G, Maller JL . The cyclin A centrosomal localization sequence recruits MCM5 and Orc1 to regulate centrosome reduplication. J Cell Sci 2010; 123: 2743–2749.

    Article  CAS  Google Scholar 

  57. Shiratsuchi G, Takaoka K, Ashikawa T, Hamada H, Kitagawa D . RBM14 prevents assembly of centriolar protein complexes and maintains mitotic spindle integrity. EMBO J 2015; 34: 97–114.

    Article  CAS  Google Scholar 

  58. Li L, Ljungman M, Dixon JE . The human Cdc14 phosphatases interact with and dephosphorylate the tumor suppressor protein p53. J Biol Chem 2000; 275: 2410–2414.

    Article  CAS  Google Scholar 

  59. Ovejero S, Ayala P, Bueno A, Sacristan MP . Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Mol Biol Cell 2012; 23: 4515–4525.

    Article  CAS  Google Scholar 

  60. Pagano M, Pepperkok R, Lukas J, Baldin V, Ansorge W, Bartek J et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol 1993; 121: 101–111.

    Article  CAS  Google Scholar 

  61. Tsai LH, Lees E, Faha B, Harlow E, Riabowol K . The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 1993; 8: 1593–1602.

    CAS  PubMed  Google Scholar 

  62. Zhang T, Wang S, Lin Y, Xu W, Ye D, Xiong Y et al. Acetylation negatively regulates glycogen phosphorylase by recruiting protein phosphatase 1. Cell Metab 2012; 15: 75–87.

    Article  CAS  Google Scholar 

  63. Barbelanne M, Hossain D, Chan DP, Peranen J, Tsang WY . Nephrocystin proteins NPHP5 and Cep290 regulate BBSome integrity, ciliary trafficking and cargo delivery. Hum Mol Genet 2014; 24: 2185–2200.

    Article  Google Scholar 

  64. Barbelanne M, Song J, Ahmadzai M, Tsang WY . Pathogenic NPHP5 mutations impair protein interaction with Cep290, a prerequisite for ciliogenesis. Hum Mol Genet 2013; 22: 2482–2494.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all members of the Tsang laboratory for constructive advice, E Gomes and J Song for assistance with cloning, and Ross Tomaino and Denis Faubert for assistance with mass spectrometry. WYT is a Canadian Institutes of Health Research New Investigator and a Fonds de recherche Santé Junior 1 Research Scholar. This work was supported by the Canadian Institutes of Health Research (MOP-115033 to WYT) and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Y Tsang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbelanne, M., Chiu, A., Qian, J. et al. Opposing post-translational modifications regulate Cep76 function to suppress centriole amplification. Oncogene 35, 5377–5387 (2016). https://doi.org/10.1038/onc.2016.74

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.74

This article is cited by

Search

Quick links