Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex

Abstract

Downregulation of microRNAs (miRNAs) is commonly observed in cancers and promotes tumorigenesis suggesting that miRNAs may function as tumor suppressors. However, the mechanism through which miRNAs are regulated in cancer, and the connection between oncogenes and miRNA biogenesis remain poorly understood. The TP53 tumor-suppressor gene is mutated in half of human cancers resulting in an oncogene with gain-of-function activities. Here we demonstrate that mutant p53 (mutp53) oncoproteins modulate the biogenesis of a subset of miRNAs in cancer cells inhibiting their post-transcriptional maturation. Interestingly, among these miRNAs several are also downregulated in human tumors. By confocal, co-immunoprecipitation and RNA-chromatin immunoprecipitation experiments, we show that endogenous mutp53 binds and sequesters RNA helicases p72/82 from the microprocessor complex, interfering with Drosha-pri-miRNAs association. In agreement with this, the overexpression of p72 leads to an increase of mature miRNAs levels. Moreover, functional experiments demonstrate the oncosuppressive role of mutp53-dependent miRNAs (miR-517a, −519a, −218, −105). Our study highlights a previously undescribed mechanism by which mutp53 interferes with Drosha-p72/82 association leading, at least in part, to miRNA deregulation observed in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ha M, Kim VN . Regulation of microRNA biogenesis. Nat Rev Mol Cell Bio 2014; 15: 509–524.

    Article  CAS  Google Scholar 

  2. Winter J, Jung S, Keller S, Gregory RI, Diederichs S . Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228–234.

    Article  CAS  PubMed  Google Scholar 

  3. Bushati N, Cohen SM . microRNA functions. Annu Rev Cell Dev Biol 2007; 23: 175–205.

    Article  CAS  PubMed  Google Scholar 

  4. Carleton M, Cleary MA, Linsley PS . MicroRNAs and cell cycle regulation. Cell Cycle 2007; 6: 2127–2132.

    Article  CAS  PubMed  Google Scholar 

  5. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–240.

    Article  CAS  PubMed  Google Scholar 

  6. Van Kouwenhove M, Kedde M, Agami R . MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011; 11: 644–656.

    Article  CAS  PubMed  Google Scholar 

  7. Uhlmann-Schiffler H, Rössler OG, Stahl H . The mRNA of DEAD box protein p72 is alternatively translated into an 82-kDa RNA helicase. J Biol Chem 2002; 277: 1066–1075.

    Article  CAS  PubMed  Google Scholar 

  8. Fuller-Pace FV . The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochim Biophys Acta 2013; 1829: 756–763.

    Article  CAS  PubMed  Google Scholar 

  9. Davis BN, Hilyard AC, Lagna G, Hata A . SMAD proteins control DROSHA-mediated microRNA maturation. Nature 2008; 454: 56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kawai S, Amano A . BRCA1 regulates microRNA biogenesis via the DROSHA microprocessor complex. J Cell Biol 2012; 197: 201–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell 2014; 156: 893–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533.

    Article  CAS  PubMed  Google Scholar 

  13. Fabbri M, Ivan M, Cimmino A, Negrini M, Calin GA . Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin Biol Ther 2007; 7: 1009–1019.

    Article  CAS  PubMed  Google Scholar 

  14. Lujambio A, Lowe SW . The microcosmos of cancer. Nature 2012; 482: 347–355.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  16. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muller PA, Vousden KH . Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25: 304–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brosh R, Rotter V . When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer 2009; 9: 701–713.

    Article  CAS  PubMed  Google Scholar 

  19. Donehower LA, Lozano G . 20 Years studying p53 functions in genetically engineered mice. Nat Rev Cancer 2009; 9: 831–841.

    Article  CAS  PubMed  Google Scholar 

  20. Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al. A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 2009; 137: 87–98.

    Article  CAS  PubMed  Google Scholar 

  21. Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell 2006; 10: 191–202.

    Article  CAS  PubMed  Google Scholar 

  22. Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 2001; 21: 1874–1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Girardini JE, Napoli M, Piazza S, Rustighi A, Marotta C, Radaelli E et al. A Pin1/mutant p53 axis promotes aggressiveness in breast cancer. Cancer Cell 2011; 20: 79–91.

    Article  CAS  PubMed  Google Scholar 

  24. Gurtner A, Starace G, Norelli G, Piaggio G, Sacchi A, Bossi G . Mutant p53-induced up-regulation of mitogen-activated protein kinase 3 contributes to gain of function. J Biol Chem 2010; 285: 14160–14169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ubertini V, Norelli G, D'Arcangelo D, Gurtner A, Cesareo E, Baldari S et al. Mutant p53 gains new function in promoting inflammatory signals by repression of the secreted interleukin-1 receptor antagonist. Oncogene 2014; 34: 2493–50.

    Article  PubMed  Google Scholar 

  26. Chang TC, Wentze EA, Kent OA, Ramachandran K, Mullendore M, Lee KH et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007; 26: 745–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hermeking H . MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 2012; 12: 613–626.

    Article  CAS  PubMed  Google Scholar 

  28. Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT et al. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 2010; 107: 6334–6339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong P, Karaayvaz M, Jia N, Kaneuchi M, Hamada J, Watari H et al. Mutant p53 gain-of-function induces epithelial-mesenchymal transition through modulation of the miR-130b-ZEB1 axis. Oncogene 2013; 32: 3286–3295.

    Article  CAS  PubMed  Google Scholar 

  30. Donzelli S, Fontemaggi G, Fazi F, Di Agostino S, Padula F, Biagioni F et al. MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death Differ 2012; 19: 1038–1048.

    Article  CAS  PubMed  Google Scholar 

  31. Masciarelli S, Fontemaggi G, Di Agostino S, Donzelli S, Carcarino E, Strano S et al. Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells. Oncogene 2014; 33: 1601–1608.

    Article  CAS  PubMed  Google Scholar 

  32. Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB et al. Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene 2013; 32: 2992–3000.

    Article  CAS  PubMed  Google Scholar 

  33. Subramanian M, Francis P, Bilke S, Li XL, Hara T, Lu X et al. Mutant p53/let-7i-axis-regulated gene network drives cell migration, invasion and metastasis. Oncogene 2014; 34: 1094–1104.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Cheng B, Miao L, Mei Y, Wu M . Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis 2013; 4: e574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013; 45: 1113–1120.

    Article  PubMed Central  Google Scholar 

  36. Borralho PM, Simões AE, Gomes SE, Lima RT, Carvalho T, Ferreira DM et al. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One 2011; 6: e23787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cha ST, Chen PS, Johansson G, Chu CY, Wang MY, Jeng YM et al. MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. Cancer Res 2010; 70: 2675–2685.

    Article  CAS  PubMed  Google Scholar 

  38. Feng X, Wang Z, Fillmore R, Xi Y . MiR-200, a new star miRNA in human cancer. Cancer Lett 2014; 344: 166–173.

    Article  CAS  PubMed  Google Scholar 

  39. Liu RF, Xu X, Huang J, Fei QL, Chen F, Li YD et al. Down-regulation of miR-517a and miR-517c promotes proliferation of hepatocellular carcinoma cells via targeting Pyk2. Cancer Lett 2013; 329: 164–173.

    Article  CAS  PubMed  Google Scholar 

  40. Nohata N, Hanazawa T, Enokida H, Seki N . microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget 2012; 3: 9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pinho FG, Frampton AE, Nunes J, Krell J, Alshaker H, Jacob J et al. Downregulation of microRNA-515-5p by the estrogen receptor modulates sphingosine kinase 1 and breast cancer cell proliferation. Cancer Res 2013; 73: 5936–5948.

    Article  CAS  PubMed  Google Scholar 

  42. Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S et al. MiR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet 2010; 6: e1000879.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tu Y, Gao X, Li G, Fu H, Cui D, Liu H et al. MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res 2013; 73: 6046–6055.

    Article  CAS  PubMed  Google Scholar 

  44. Wu L, Cai C, Wang X, Liu M, Li X, Tang H . MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett 2011; 585: 1322–1330.

    Article  CAS  PubMed  Google Scholar 

  45. Yoshitomi T, Kawakami K, Enokida H, Chiyomaru T, Kagara I, Tatarano S et al. Restoration of miR-517a expression induces cell apoptosis in bladder cancer cell lines. Oncol Rep 2011; 25: 1661–1668.

    PubMed  Google Scholar 

  46. Zhang M, Zhou S, Zhang L, Zhang J, Cai H, Zhu J et al. miR-518b is down-regulated, and involved in cell proliferation and invasion by targeting Rap1b in esophageal squamous cell carcinoma. FEBS Lett 2012; 586: 3508–3521.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang J, Sun Q, Zhang Z, Ge S, Han ZG, Chen WT et al. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 2013; 32: 61–69.

    Article  PubMed  Google Scholar 

  48. Abdelmohsen K, Kim MM, Srikantan S, Mercken EM, Brennan SE, Wilson GM et al. miR-519 suppresses tumor growth by reducing HuR levels. Cell Cycle 2010; 9: 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  49. Marasa BS, Srikantan S, Martindale JL, Kim MM, Lee EK, Gorospe M et al. MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany, NY) 2010; 2: 333–343.

    Article  CAS  Google Scholar 

  50. Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J et al. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 2005; 24: 543–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fuller-Pace FV, Moore HC . RNA helicases p68 and p72: multifunctional proteins with important implications for cancer development. Future Oncol 2011; 7: 239–251.

    Article  CAS  PubMed  Google Scholar 

  52. Muller PA, Trinidad AG, Caswell PT, Norman JC, Vousden KH . Mutant p53 regulates Dicer through p63-dependent and -independent mechanisms to promote an invasive phenotype. J Biol Chem 2014; 289: 122–132.

    Article  CAS  PubMed  Google Scholar 

  53. Bossi G, Lapi E, Strano S, Rinaldo C, Blandino G, Sacchi A . Mutant p53 gain of function: reduction of tumor malignancy of human cancer cell lines through abrogation of mutant p53 expression. Oncogene 2006; 25: 304–309.

    Article  CAS  PubMed  Google Scholar 

  54. Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I . p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem 2013; 381: 61–68.

    Article  CAS  PubMed  Google Scholar 

  55. Wiznerowicz M, Trono D . Conditional suppression of cellular genes: lentivirus vector mediated drug-inducible RNA interference. J Virol 2003; 16: 8957–8961.

    Article  Google Scholar 

  56. Brummelkamp TR, Bernards R, Agami RA . A system for stable expression of short interfering RNAs in mammalian cells. Science 2002; 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  57. Bossi G, Marampon F, Maor-Aloni R, Zani B, Rotter V, Oren M et al. Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle 2008; 7: 1870–1879.

    Article  CAS  PubMed  Google Scholar 

  58. Garufi A, Ricci A, Trisciuoglio D, Iorio E, Carpinelli G, Pistritto G et al. Glucose restriction induces cell death in parental but not in homeodomain-interacting protein kinase 2-depleted RKO colon cancer cells: molecular mechanisms and implications for tumor therapy. Cell Death Dis 2013; 4: e639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Trisciuoglio D, Ragazzoni Y, Pelosi A, Desideri M, Carradori S, Gabellini C et al. CPTH6, a thiazole derivative, induces histone hypoacetylation and apoptosis in human leukemia cells. Clin Cancer Res. 2012; 18: 475–486.

    Article  CAS  PubMed  Google Scholar 

  60. Gostissa M, Morelli M, Mantovani F, Guida E, Piazza S, Collavin L et al. The transcriptional repressor hDaxx potentiates p53-dependent apoptosis. J Biol Chem 2004; 279: 48013–48023.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Vittorio Sartorelli for the p72 expression vector, Dr Silvia Bacchetti and Silvia Soddu for interesting discussions on the manuscript, Maria Pia Gentileschi for technical advice, Daniela Bona for secretary assistance. Aymone Gurtner and Gianluca Bossi were supported by a Fondazione Umberto Veronesi Fellowship; Dawid Walerych was a recipient of the FEBS postdoctoral fellowship. This work has been supported by grant from AIRC to AG (MFAG 11752); from AIRC to GP (IG 13234); from AIRC (Special Program Molecular Clinical Oncology ‘5 per mille’) (grant no. 10016) to GDS and from Italian Ministry of Health to GDS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G Bossi, G Piaggio or A Gurtner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garibaldi, F., Falcone, E., Trisciuoglio, D. et al. Mutant p53 inhibits miRNA biogenesis by interfering with the microprocessor complex. Oncogene 35, 3760–3770 (2016). https://doi.org/10.1038/onc.2016.51

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.51

This article is cited by

Search

Quick links