Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability


The phosphatase CDC25A is a key regulator of cell cycle progression by dephosphorylating and activating cyclin-CDK complexes. CDC25A is an unstable protein expressed from G1 until mitosis. CDC25A overexpression, which can be caused by stabilization of the protein, accelerates the G1/S and G2/M transitions, leading to genomic instability and promoting tumorigenesis. Thus, controlling CDC25A protein levels by regulating its stability is a critical mechanism for timing cell cycle progression and to maintain genomic integrity. Herein, we show that CDC25A is phosphorylated on Ser40 throughout the cell cycle and that this phosphorylation is established during the progression from G1 to S phase. We demonstrate that CyclinD-CDK4/CDK6 complexes mediate the phosphorylation of CDC25A on Ser40 during G1 and that these complexes directly phosphorylate this residue in vitro. Importantly, we also find that CyclinD1-CDK4 decreases CDC25A stability in a ßTrCP-dependent manner and that Ser40 and Ser88 phosphorylations contribute to this regulation. Thus our results identify cyclinD-CDK4/6 complexes as novel regulators of CDC25A stability during G1 phase, generating a negative feedback loop allowing control of the G1/S transition.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4


  1. Boutros R, Dozier C, Ducommun B . The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol 2006; 18: 185–191.

    Article  CAS  Google Scholar 

  2. Bertero T, Gastaldi C, Bourget-Ponzio I, Mari B, Meneguzzi G, Barbry P et al. CDC25A targeting by miR-483-3p decreases CCND-CDK4/6 assembly and contributes to cell cycle arrest. Cell Death Differ 2013; 20: 800–811.

    Article  CAS  Google Scholar 

  3. Shen T, Huang S . The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem 2012; 12: 631–639.

    Article  CAS  Google Scholar 

  4. Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL . TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci USA 2003; 100: 15548–15553.

    Article  CAS  Google Scholar 

  5. Fernandez-Vidal A, Ysebaert L, Didier C, Betous R, De Toni F, Prade-Houdellier N et al. Cell adhesion regulates CDC25A expression and proliferation in acute myeloid leukemia. Cancer Res 2006; 66: 7128–7135.

    Article  CAS  Google Scholar 

  6. Kittipatarin C, Li WQ, Bulavin DV, Durum SK, Khaled AR . Cell cycling through Cdc25A: transducer of cytokine proliferative signals. Cell Cycle 2006; 5: 907–912.

    Article  CAS  Google Scholar 

  7. Ray D, Terao Y, Nimbalkar D, Hirai H, Osmundson EC, Zou X et al. Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res 2007; 67: 6605–6611.

    Article  CAS  Google Scholar 

  8. Ray D, Terao Y, Fuhrken PG, Ma ZQ, DeMayo FJ, Christov K et al. Deregulated CDC25A expression promotes mammary tumorigenesis with genomic instability. Cancer Res 2007; 67: 984–991.

    Article  CAS  Google Scholar 

  9. Boutros R, Lobjois V, Ducommun B . CDC25 phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007; 7: 495–507.

    Article  CAS  Google Scholar 

  10. Blomberg I, Hoffmann I . Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Mol Cell Biol 1999; 19: 6183–6194.

    Article  CAS  Google Scholar 

  11. Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I . Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. J Biol Chem 2010; 285: 16978–16990.

    Article  CAS  Google Scholar 

  12. Mailand N, Podtelejnikov AV, Groth A, Mann M, Bartek J, Lukas J . Regulation of G(2)/M events by Cdc25A through phosphorylation-dependent modulation of its stability. EMBO J 2002; 21: 5911–5920.

    Article  CAS  Google Scholar 

  13. Fernandez-Vidal A, Mazars A, Manenti S . CDC25A: a rebel within the CDC25 phosphatases family? Anticancer Agents Med Chem 2008; 8: 825–831.

    Article  CAS  Google Scholar 

  14. Hoffmann I, Draetta G, Karsenti E . Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J 1994; 13: 4302–4310.

    Article  CAS  Google Scholar 

  15. Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV et al. Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 2003; 426: 87–91.

    Article  CAS  Google Scholar 

  16. Jin J, Shirogane T, Xu L, Nalepa G, Qin J, Elledge SJ et al. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Genes Dev 2003; 17: 3062–3074.

    Article  CAS  Google Scholar 

  17. Chung JH, Bunz F . Cdk2 is required for p53-independent G2/M checkpoint control. PLoS Genet 2010; 6: e1000863.

    Article  Google Scholar 

  18. Ducruet AP, Lazo JS . Regulation of Cdc25A half-life in interphase by cyclin-dependent kinase 2 activity. J Biol Chem 2003; 278: 31838–31842.

    Article  CAS  Google Scholar 

  19. Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H et al. The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. Mol Biol Cell 2009; 20: 2186–2195.

    Article  CAS  Google Scholar 

  20. Chang KH, Vincent F, Shah K . Deregulated Cdk5 triggers aberrant activation of cell cycle kinases and phosphatases inducing neuronal death. J Cell Sci 2012; 125 (Pt 21): 5124–5137.

    Article  CAS  Google Scholar 

  21. Tumurbaatar I, Cizmecioglu O, Hoffmann I, Grummt I, Voit R . Human Cdc14B promotes progression through mitosis by dephosphorylating Cdc25 and regulating Cdk1/cyclin B activity. PLoS One 2011; 6: e14711.

    Article  CAS  Google Scholar 

  22. Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 1997; 243: 527–536.

    Article  CAS  Google Scholar 

  23. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3: 1427–1438.

    CAS  Google Scholar 

  24. Honaker Y, Piwnica-Worms H . Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene 2010; 29: 3324–3334.

    Article  CAS  Google Scholar 

  25. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K et al. Targets of the cyclin-dependent kinase Cdk1. Nature 2003; 425: 859–864.

    Article  CAS  Google Scholar 

  26. Bahassi el M, Yin M, Robbins SB, Li YQ, Conrady DG, Yuan Z et al. A human cancer-predisposing polymorphism in Cdc25A is embryonic lethal in the mouse and promotes ASK-1 mediated apoptosis. Cell Div 2011; 6: 4.

    Article  Google Scholar 

  27. Hutchins JR, Clarke PR . Many fingers on the mitotic trigger: post-translational regulation of the Cdc25C phosphatase. Cell Cycle 2004; 3: 41–45.

    Article  CAS  Google Scholar 

  28. Stukenberg PT, Kirschner MW . Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 2001; 7: 1071–1083.

    Article  CAS  Google Scholar 

  29. Karagoz ID, Ozaslan M, Cengiz B, Kalender ME, Kilic IH, Oztuzcu S et al. CDC 25A gene 263C/T, -350C/T, and -51C/G polymorphisms in breast carcinoma. Tumour Biol 2010; 31: 597–604.

    Article  CAS  Google Scholar 

  30. Kanemori Y, Uto K, Sagata N . Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc Natl Acad Sci USA 2005; 102: 6279–6284.

    Article  CAS  Google Scholar 

  31. Clucas C, Cabello J, Bussing I, Schnabel R, Johnstone IL . Oncogenic potential of a C. elegans cdc25 gene is demonstrated by a gain-of-function allele. EMBO J 2002; 21: 665–674.

    Article  CAS  Google Scholar 

  32. Khaled AR, Bulavin DV, Kittipatarin C, Li WQ, Alvarez M, Kim K et al. Cytokine-driven cell cycling is mediated through Cdc25A. J Cell Biol 2005; 169: 755–763.

    Article  CAS  Google Scholar 

  33. Gubanova E, Issaeva N, Gokturk C, Djureinovic T, Helleday T . SMG-1 suppresses CDK2 and tumor growth by regulating both the p53 and Cdc25A signaling pathways. Cell Cycle 2013; 12: 3770–3780.

    Article  CAS  Google Scholar 

  34. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 1996; 15: 7060–7069.

    Article  CAS  Google Scholar 

  35. van den Heuvel S, Harlow E . Distinct roles for cyclin-dependent kinases in cell cycle control. Science 1993; 262: 2050–2054.

    Article  CAS  Google Scholar 

  36. Watanabe H, Pan ZQ, Schreiber-Agus N, DePinho RA, Hurwitz J, Xiong Y . Suppression of cell transformation by the cyclin-dependent kinase inhibitor p57KIP2 requires binding to proliferating cell nuclear antigen. Proc Natl Acad Sci USA 1998; 95: 1392–1397.

    Article  CAS  Google Scholar 

  37. Lim KL, Chew KC, Tan JM, Wang C, Chung KK, Zhang Y et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 2005; 25: 2002–2009.

    Article  CAS  Google Scholar 

Download references


We thank H. Piwnica-Worms for providing phospho-Ser76, 82 and 88 CDC25A antibodies, V. Dulic for providing BJ-hTert cells and M. Gotanegre for technical assistance. This work was supported in part by grants to OBS from the Région Midi-Pyrénées, Toulouse Métropole and European funds FEDER (Fonds Européens de Développement Régional) for mass spectrometry.

Author information

Authors and Affiliations


Corresponding author

Correspondence to C Dozier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dozier, C., Mazzolini, L., Cénac, C. et al. CyclinD-CDK4/6 complexes phosphorylate CDC25A and regulate its stability. Oncogene 36, 3781–3788 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links